用户名: 密码: 验证码:
渝西地区镉轻度污染稻田安全利用技术
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Safe Utilization of Paddy Soils Lightly Polluted with Cadmium in Western Chongqing
  • 作者:李娜 ; 贺红周 ; 冯爱煊 ; 李伟 ; 蒋珍茂 ; 魏世强
  • 英文作者:LI Na;HE Hong-zhou;FENG Ai-xuan;LI Wei;JIANG Zhen-mao;WEI Shi-qiang;College of Resources and Environment,Southwest University;Chongqing Key Laboratory of Agricultural Resources and Environment;Chongqing Agricultural Technology Extension Station;
  • 关键词:镉(Cd) ; 钝化剂 ; 水稻 ; 土壤 ; 有效性
  • 英文关键词:cadmium(Cd);;passivators;;rice;;soil;;availability
  • 中文刊名:环境科学
  • 英文刊名:Environmental Science
  • 机构:西南大学资源环境学院;重庆市农业资源与环境研究重点实验室;重庆市农业技术推广总站;
  • 出版日期:2019-05-28 11:13
  • 出版单位:环境科学
  • 年:2019
  • 期:10
  • 基金:国家重点研发计划项目(2018YFD0800600);; 重庆市科学技术委员会重点研发计划项目(cstc2017shms-zdyfX0008)
  • 语种:中文;
  • 页:337-346
  • 页数:10
  • CN:11-1895/X
  • ISSN:0250-3301
  • 分类号:X53
摘要
渝西地区是重庆市粮食主产区,区域土壤污染特征为以镉(Cd)为主的轻中度污染区.选择该区域酸性和钙质两类典型紫色稻田土壤,开展了低累积水稻品种联合钝化剂的田间原位修复试验,比较了水稻低累积品种常两优772联合使用硅钙肥、铁粉、生物质炭和秸秆有机肥4种钝化剂的修复效果.结果表明:①在酸性和钙质两类紫色稻田土壤上,除Fe粉外的其他3种钝化剂均提高了水稻稻谷产量,酸性紫色稻田土壤上以秸秆有机肥效果最好,增产47. 43%;而在钙质稻田土壤上则以生物质炭最好,增产23. 95%.②酸性紫色稻田土壤(p H=4. 75)上单纯低累积水稻品种不能满足水稻安全生产要求,联合钝化剂施用稻米Cd含量降幅为14. 81%~54. 88%,除硅钙肥外其他3种钝化剂稻米Cd含量均达到安全食用标准(0. 2mg·kg-1,GB 2762-2017);而钙质紫色稻田土壤(p H=7. 77)上不同处理稻米Cd含量在0. 012~0. 030 mg·kg-1之间,均未超过安全标准,但施用钝化剂(除生物质炭外)仍然可使稻米Cd含量降低,降幅为26. 67%~59. 00%.③钝化剂影响Cd在稻株体内的转运.以酸性土壤为例,硅钙肥可降低茎中Cd向糙米的转运,Fe粉和生物质炭可减少根部Cd的富集并降低茎中Cd向糙米的转运,秸秆有机肥可降低根系Cd向茎中的转运.④添加4种钝化剂均能促进土壤Cd向残渣态转化,降低土壤中有效Cd含量,进而降低了水稻各器官中Cd的积累.在酸性土壤中生物质炭对土壤Cd的钝化效果最好,钙质土壤中则是秸秆有机肥钝化效果最好.⑤酸性土壤上硅钙肥和秸秆有机肥显著提升了酸性土壤p H值和有机质含量,相应地土壤有效Cd含量降低了39. 45%和34. 69%;在钙质土壤上此现象则不明显.
        The western Chongqing region is the main grain-producing area in Chongqing. This region's soils are characterized by lightto-moderate cadmium( Cd) pollution. Two types of typical paddy soils in this area( acidic and calcareous purple soils) were selected for the development of safe rice production techniques using in situ field remediation experiments. These involved a low-Cdaccumulating rice variety( Changliangyou 772) grown either alone or in combination with heavy metal passivators( silicon-calcium fertilizer,iron powder,biochar,and straw organic fertilizer). The results showed that: ① all of the passivators except for the Fe powder increased rice yields from both types of soils. Straw organic fertilizer showed the best results for the acidic purple paddy soil,with a rice-yield increase of 47. 43%,while biochar performed best for the calcareous paddy soil,increasing yields by 23. 95%; ②The low-accumulation rice variety alone could not meet the requirements of safe rice production in the acid purple paddy soil( p H =4. 75); however,combined the with passivators( with the exception of the silicon-calcium fertilizer),Cd content in rice grains was reduced by 14. 81%-54. 88% to within the national safe food standard for rice( 0. 2 mg·kg-1,GB 2762-2017). The Cd content of rice grains varied between 0. 012 and 0. 030 mg·kg-1 in the calcareous purple paddy soil( p H = 7. 77),under various treatments,which was far lower than the safety standard. The application of passivators( with the exception of biomass charcoal) further reduced the Cd content of rice by 26. 67%-59. 00% nevertheless; ③ The use of passivators altered Cd transportation and distribution in the rice plant. Taking the acidic soil as an example,silicon-calcium fertilizer inhibited the transport of Cd from the stems to the rice grains,Fe powder and biochar reduced the enrichment of Cd in roots and inhibited the transport of Cd from the stems to the rice grains,and straw organic fertilizer inhibited the transport of Cd from the roots to the stems; ④ The application of passivators promoted the transformation of soil Cd from labile forms into residual form,reduced the bioavailability of Cd in the soil,and,thus,reduced the accumulation of Cd in the rice plants. In the acidic soil,biochar showed the best effect,while straw organic fertilizer performed best in calcareous soils. ⑤Silicon-calcium fertilizer and straw organic fertilizer significantly increased the p H and organic matter content of acid soils.Consequently,the soil available Cd content decreased by 39. 45% and 34. 69%,respectively,while no such effects were observed for the calcareous soil.
引文
[1]徐加宽,杨连新,王余龙,等.水稻对有毒重金属元素的吸收与分配机理的研究进展[J].植物学通报,2005,22(5):614-622.Xu J K,Yang L X,Wang Y L,et al. Advances in the study uptake and accumulation of heavy metal in rice(Oryza sativa)and its mechanisms[J]. Chinese Bulletin of Botany,2005,22(5):614-622.
    [2]许彬彬.基于采样策略的污染产区土壤—水稻重金属迁移转化模型及健康损害成本评估[D].杭州:浙江大学,2015. 1-10.
    [3]环境保护部,国土资源部.全国土壤污染状况调查公报[J].中国环保产业,2014,(5):10-11.
    [4]杨祥田,周翠,何贤彪,等.田间试验条件下不同基因型水稻对Cd和Pb的吸收分配特征[J].农业环境科学学报,2013,32(3):438-444.Yang X T,Zhou C,He X B,et al. Uptake and partition of Cd and Pb among rice genotypes in contaminated paddy soil[J].Journal of Agro-Environment Science,2013,32(3):438-444.
    [5]王美娥,彭驰,陈卫平.水稻品种及典型土壤改良措施对稻米吸收镉的影响[J].环境科学,2015,36(11):4283-4290.Wang M E,Peng C,Chen W P. Effects of rice cultivar and typical soil improvement measures on the uptake of Cd in rice grains[J]. Environmental Science,2015,36(11):4283-4290.
    [6] Xu L,Cui H B,Zheng X B,et al. Changes in the heavy metal distributions in whole soil and aggregates affected by the application of alkaline materials and phytoremediation[J]. RSC Advances,2017,7(65):41033-41042.
    [7]黄宇,廖敏,叶照金,等.两种低镉积累水稻镉含量与土壤镉的剂量-效应关系及调控[J].生态与农村环境学报,2017,33(8):748-754.Huang Y,Liao M,Ye Z J,et al. Cd concentrations in two low Cd accumulating varieties of rice and their relationships with soil Cd content and their regulation under field conditions[J].Journal of Ecology and Rural Environment,2017,33(8):748-754.
    [8]宁皎莹,周根娣,周春儿,等.农田土壤重金属污染钝化修复技术研究进展[J].杭州师范大学学报(自然科学版),2016,15(2):156-162.Ning J Y,Zhou G D,Zhou C E,et al. Researches on the passivation of heavy metals in agricultural soils:a review[J].Journal of Hangzhou Normal University(Natural Science Edition),2016,15(2):156-162.
    [9]罗远恒,顾雪元,吴永贵,等.钝化剂对农田土壤镉污染的原位钝化修复效应研究[J].农业环境科学学报,2014,33(5):890-897.Luo Y H,Gu X Y,Wu Y G,et al. In-situ remediation of cadmium-polluted agriculture land using stabilizing amendments[J]. Journal of Agro-Environment Science,2014,33(5):890-897.
    [10]刘昭兵,纪雄辉,彭华,等.磷肥对土壤中镉的植物有效性影响及其机理[J].应用生态学报,2012,23(6):1585-1590.Liu Z B, Ji X H, Peng H, et al. Effects of phosphorous fertilizers on phytoavailability of cadmium in its contaminated soil and related mechanisms[J]. Chinese Journal of Applied Ecology,2012,23(6):1585-1590.
    [11]李剑睿,徐应明,林大松,等.农田重金属污染原位钝化修复研究进展[J].生态环境学报,2014,23(4):721-728.Li J R, Xu Y M, Lin D S, et al. In situ immobilization remediation of heavy metals in contaminated soils:a review[J].Ecology and Environmental Sciences,2014,23(4):721-728.
    [12]丁凌云,蓝崇钰,林建平,等.不同改良剂对重金属污染农田水稻产量和重金属吸收的影响[J].生态环境,2006,15(6):1204-1208.Ding L Y, Lan C J, Lin J P, et al. Effects of different ameliorations on rice production and heavy metals uptake by rice grown on soil contaminated by heavy metals[J]. Ecology and Environment,2006,15(6):1204-1208.
    [13]王霞,仓龙,杨杰,等.不同生物质炭和矿物钝化材料对镉污染稻田土壤的修复研究[J].广东农业科学,2018,45(4):80-86.Wang X, Cang L, Yang J, et al. Remediation of Cd contaminated paddy soil using different kinds of biochar and mineral materials:a field trial[J]. Guangdong Agricultural Sciences,2018,45(4):80-86.
    [14]王林,徐应明,孙扬,等.海泡石及其复配材料钝化修复镉污染土壤[J].环境工程学报,2010,4(9):2093-2098.Wang L,Xu Y M,Sun Y,et al. Immobilization of cadmium contaminated soils using sepiolite and its compound materials[J]. Chinese Journal of Environmental Engineering,2010,4(9):2093-2098.
    [15]梁学峰,徐应明,王林,等.天然黏土联合磷肥对农田土壤镉铅污染原位钝化修复效应研究[J].环境科学学报,2011,31(5):1011-1018.Liang X F,Xu Y M,Wang L,et al. In-situ immobilization of cadmium and lead in a contaminated agricultural field by adding natural clays combined with phosphate fertilizer[J]. Acta Scientiae Circumstantiae,2011,31(5):1011-1018.
    [16] Sizmur T,Wingate J,Hutchings T,et al. Lumbricus terrestris L. does not impact on the remediation efficiency of compost and biochar amendments[J]. Pedobiologia,2011,54(S1):211-216.
    [17]李婧,陈森,周艳文,等.不同土壤钝化剂对土壤镉生物有效性的影响[J].安徽农业科学,2017,45(36):94-97.Li J,Chen S,Zhou Y W,et al. Effects of different passivators on bio-availability of Cd in soil[J]. Journal of Anhui Agricultural Sciences,2017,45(36):94-97.
    [18]纪雄辉,梁永超,鲁艳红,等.污染稻田水分管理对水稻吸收积累镉的影响及其作用机理[J].生态学报,2007,27(9):3930-3939.Ji X H, Liang Y C, Lu Y H, et al. The effect of water management on the mechanism and rate of uptake and accumulation of cadmium by rice growing in polluted paddy soil[J]. Acta Ecologica Sinica,2007,27(9):3930-3939.
    [19]于亚琴.不同钝化材料对重金属钝化稳定性机理研究[D].济南:山东师范大学,2017.
    [20]康宏宇,林健,张乃明,等.不同钝化材料对重金属污染土壤的钝化效果研究[J].中国农学通报,2015,31(35):176-180.Kang H Y,Lin J,Zhang N M,et al. Passivation effect of different passive materials on heavy metal polluted soil[J].Chinese Agricultural Science Bulletin,2015,31(35):176-180.
    [21]孙丽娟,秦秦,宋科,等.镉污染农田土壤修复技术及安全利用方法研究进展[J].生态环境学报,2018,27(7):1377-1386.Sun L J,Qin Q,Song K,et al. The remediation and safety utilization techniques for Cd contaminated farmland soil:a review[J]. Ecology and Environmental Sciences,2018,27(7):1377-1386.
    [22] Zhen R L,Chen Z,Cai C,et al. Mitigating heavy metal accumulation into rice(Oryza sativa L.)using biochar amendment-a field experiment in Hunan, China[J].Environmental Science and Pollution Research,2015,22(14):11097-11108.
    [23]朱颖.生物炭和石灰石对大冶市农田土壤镉的原位钝化修复[D].武汉:华中农业大学,2017. 1-5.
    [24]陈彩艳,唐文帮.筛选和培育镉低积累水稻品种的进展和问题探讨[J].农业现代化研究,2018,39(6):1044-1051.Chen C Y,Tang W B. A perspective on the selection and breeding of low-Cd rice[J]. Research of Agricultural Modernization,2018,39(6):1044-1051.
    [25]鲁如坤.土壤农业化学分析方法[M].北京:中国农业科技出版社,2000.
    [26]尹君,张毅功,肖崇彬.土壤中有效态镉测定方法探讨[J].河北农业大学学报,1993,16(4):37-41.Yin J,Zhang Y G,Xiao C B. The study of analysing available cadmium in soil[J]. Journal of Agricultural University of Hebei,1993,16(4):37-41.
    [27]张朝阳,彭平安,宋建中,等.改进BCR法分析国家土壤标准物质中重金属化学形态[J].生态环境学报,2012,21(11):1881-1884.Zhang C Y,Peng P A,Song J Z,et al. Utilization of modified BCR procedure for the chemical speciation of heavy metals in Chinese soil reference material[J]. Ecology and Environmental Sciences,2012,21(11):1881-1884.
    [28]谭长华.浅析重庆地区水稻高产稳产低耗高效综合栽培技术[J].南方农业,2017,11(1):44-45.
    [29]邓华健,肖广全,陈玉成,等.重庆市郊稻米Cd风险的原位钝化削减[J].环境工程学报,2018,12(12):3415-3425.Deng H J,Xiao G Q,Chen Y C,et al. In-situ passivation in Cd polluted paddy fields of Chongqing suburb for rice healthy control[J]. Chinese Journal of Environmental Engineering,2018,12(12):3415-3425.
    [30]陈齐,邓潇,陈珊,等.典型土壤不同提取态Cd与水稻吸收累积的关系[J].环境科学,2017,38(6):2538-2545.Chen Q,Deng X,Chen S,et al. Correlations between different extractable cadmium levels in typical soils and cadmium accumulation in rice accumulation in rice[J]. Environmental Science,2017,38(6):2538-2545.
    [31] Liu K,Lv J L,He W X,et al. Major Factors influencing cadmium uptake from the soil into wheat plants[J].Ecotoxicology and Environmental Safety,2015,113:207-213.
    [32]孙约兵,王朋超,徐应明,等.海泡石对镉-铅复合污染钝化修复效应及其土壤环境质量影响研究[J].环境科学,2014,35(12):4720-4726.Sun Y B,Wang P C,Xu Y M,et al. Immobilization remediation of Cd and Pb contaminated soil:remediation potential and soil environmental quality[J]. Environmental Science,2014,35(12):4720-4726.
    [33]何峰.重庆市农田土壤-粮食作物重金属关联特征与污染评价[D].重庆:西南农业大学,2004.
    [34]谢晓梅,方至萍,廖敏,等.低积累水稻品种联合腐殖酸、海泡石保障重镉污染稻田安全生产的潜力[J].环境科学,2018,39(9):4348-4358.Xie X M,Fang Z P,Liao M,et al. Potential to ensure safe production from rice fields polluted with heavy cadmium by combining a rice variety with low cadmium accumulation,humic acid,and sepiolite[J]. Environmental Science,2018,39(9):4348-4358.
    [35]袁金华,徐仁扣.生物质炭对酸性土壤改良作用的研究进展[J].土壤,2012,44(4):541-547.Yuan J H,Xu R Q. Research progress of amelioration effects of biochars on acid soils[J]. Soils,2012,44(4):541-547.
    [36] Chen D,Hu G,Li R Y,et al. Low uptake affinity cultivars with biochar to tackle Cd-tainted rice———A field study over four rice seasons in Hunan,China[J]. Science of the Total Environment,2016,541:1489-1498.
    [37]郭文娟,梁学峰,林大松,等.土壤重金属钝化修复剂生物炭对镉的吸附特性研究[J].环境科学,2013,34(9):3716-3721.Guo W J,Liang X F,Lin D S,et al. Adsorption of Cd2+on biochar from aqueous solution[J]. Environmental Science,2013,34(9):3716-3721.
    [38] Violante A,Ricciardella M,Pigna M. Adsorption of heavy metals on mixed Fe-Al oxides in the absence or presence of organic ligands[J]. Water,Air,and Soil Pollution,2003,145(1-4):289-306.
    [39] Masue Y,Loeppert R H,Kramer T A. Arsenate and arsenite adsorption and desorption behavior on coprecipitated aluminum:iron hydroxides[J]. Environmental Science&Technology,2007,41(3):837-842.
    [40] Mahar A,Wang P,Li R H,et al. Immobilization of lead and cadmium in contaminated soil using amendments:a review[J].Pedosphere,2015,25(4):555-568.
    [41]周慜,张萌,陆友伟,等.土壤中Pb、Cd的稳定化修复技术研究进展[J].环境污染与防治,2015,37(5):83-89.Zhou M,Zhang M,Lu Y W,et al. A review on remediation of lead and cadmium in soil using stabilization technologies[J].Environmental Pollution and Control,2015,37(5):83-89.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700