用户名: 密码: 验证码:
连续种植不同绿肥作物的土壤团聚体稳定性及可蚀性特征
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Stability and Erodibility of Aggregate Affected by Different Continuous Green Manure Cultivations
  • 作者:张钦 ; 于恩江 ; 林海波 ; 张爱华 ; 陈正刚 ; 朱青 ; 曹卫东 ; 姚单君
  • 英文作者:ZHANG Qin;YU Enjiang;LIN Haibo;ZHANG Aihua;CHEN Zhenggang;ZHU Qing;CAO Weidong;YAO Danjun;Guizhou Institute of Soil and Fertilizer/Guizhou Institute of Agricultural Resources and Environment, GAAS/Scientific Observing and Experimental Station of Arable Land Conservation and Agriculture Environment (Guizhou), Ministry of Agriculture;Guizhou University;Soil and Fertilizer Station of Guizhou;Institute of Agricultural Resources and Regional Planning,CAAS;
  • 关键词:土壤团聚体 ; 绿肥 ; 稳定性 ; 可侵蚀性
  • 英文关键词:soil aggregate;;green manure;;stability;;erodibility
  • 中文刊名:水土保持研究
  • 英文刊名:Research of Soil and Water Conservation
  • 机构:贵州省农业科学院土壤肥料研究所/农业资源与环境研究所/农业部贵州耕地保育与农业环境科学观测试验站;贵州大学;贵州省土壤肥料工作总站;中国农业科学院农业资源与农业区划研究所;
  • 出版日期:2019-03-29
  • 出版单位:水土保持研究
  • 年:2019
  • 期:02
  • 基金:贵州省科学技术基金项目(黔科合LH字[2014]7702号);; 贵州省社发攻关项目(黔科合[2016]支撑2837);; 国家绿肥产业技术体系(CARS-22);; 公益性行业(农业)科研专项(201103005)
  • 语种:中文;
  • 页:13-20
  • 页数:8
  • CN:61-1272/P
  • ISSN:1005-3409
  • 分类号:S157;S55
摘要
为探讨连续种植绿肥对土壤团聚体的影响,以箭筈豌豆(Vicia sativa L.)、肥田萝卜(Raphanus sativus L.)、蓝花苕子(Vicia cracca L.)、毛叶苕子(Vicia villosa Roth)为研究对象,分析了连续种植不同绿肥作物下的土壤团聚体组成、稳定性及可蚀性特征。结果表明:连续种植绿肥能够提高不同粒径土壤机械稳定性、水稳性团聚体含量,肥田萝卜主要提高>2 mm粒径的机械稳定性团聚体含量、>5 mm粒径的水稳性团聚体含量,毛叶苕子、蓝花苕子主要提高0.25~2 mm粒径的机械稳定性团聚体含量,蓝花苕子主要提高了0.25~5 mm粒径的水稳性团聚体含量。并且,连续种植绿肥有利于形成土壤水稳性大团聚体(>0.25 mm),>5 mm粒级的土壤水稳性团聚体的增加对土壤水稳性大团聚体积累的影响较为突出,其中,毛叶苕子的土壤水稳性大团聚体含量最高。另外,连续种植肥田萝卜、毛叶苕子有利于土壤平均重量直径和几何平均直径的提升。同时,连续种植绿肥较清耕显著降低了土壤团聚体破坏率29%~38.17%,土壤团聚体破坏率表现为毛叶苕子<肥田萝卜<蓝花苕子<箭筈豌豆。除此之外,连续种植绿肥对土壤可侵蚀因子(K)产生了一定的影响,肥田萝卜<毛叶苕子<箭筈豌豆<蓝花苕子,虽然土壤可侵蚀因子(K)与绿肥作物品种间的规律不显著,但是其与土壤团聚体的关系很密切,土壤水稳性大团聚体含量越高,土壤平均重量直径、几何平均直径越大,可蚀性K值越低,团聚体破坏率越低,土壤结构的稳定性、抗侵蚀性越好。
        To investigate the effects of continuous planting green manure on soil aggregate, five treatments including clean tillage, Vicia sativa L., Raphanus sativus L., Vicia cracca L., Vicia villosa Roth were chosen in this study. And the constituent, stability and erodibility under continuous planting green manure cultivation were examined. The results showed that the contents of mechanical-stable and water stable aggregate increased under green manure cultivation. The contents of >2 mm mechanical stable aggregate and >5 mm water stable aggregate were improved in Vicia sativus L. field. The contents of 0.25~2 mm mechanical-stable aggregate were improved in fields of Vicia villosa Roth and Vicia cracca L.. The contents of 0.25~5 mm water-stable aggregate were improved in field of Vicia cracca L.. Continuous planting cultivation of green manure was beneficial to the formation of water stable macroaggregate(>0.25 mm) and the increase of the contents of >5 mm soil water-stable aggregates, and has a prominent influence on the accumulation of big water-stable aggregates. The percentage of water-stable macroaggregate under the treatment of Vicia villosa Roth was highest. Raphanus sativus L. and Vicia villosa Roth were conducive to the promotion of mean weight diameter and geometric mean diameter of aggregate. Moreover, the percentage of aggregate destruction under green manure cultivation significantly decreased by 29%~38.17%. The percentage of aggregate destruction increased in the order: Vicia villosa Roth
引文
[1]王涛,何丙辉,秦川,等.不同种植年限黄花生物埂护坡土壤团聚体组成及其稳定性[J].水土保持学报,2014,28(5):153-158.
    [2]蒲玉琳,林超文,谢德体,等.植物篱—农作坡地土壤团聚体组成和稳定性特征[J].应用生态学报,2013,24(1):122-128.
    [3]于爱忠,黄高宝,柴强,等.耕作措施对冬小麦农田土壤团聚体分布及稳定性的影响[J].水土保持学报,2011,25(6):119-123.
    [4]Lal R, Shukila M K. Principles of soil physics[M]. New York: Marchel Dekker, Inc.,2004.
    [5]Abu-Hamdeh N H, Abo-Qudais A S A, Othman A M. Effect of soil aggregate size on infiltration and erosion characteristics[J]. European Journal of Soil Science, 2010,57(5):609-616.
    [6]Valmis S, Dimoyiannis D, Danalatos N G. Assessing interrill erosion rate from soil aggregate instability index, rainfall intensity and slope angle on cultivated soils in central Greece[J]. Soil & Tillage Research, 2005,80(1):139-147.
    [7]Zhang G S, Chan K Y, Oates A, et al. Relationship between soil structure and runoff/soil loss after 24 years of conservation tillage[J]. Soil & Tillage Research, 2007,92(1):122-128.
    [8]Young R A. Characteristics of eroded sediment[J]. Transactions of the Asae, 1980,23(5):1139-1142.
    [9]Bryan R B. Soil erodibility and processes of water erosion on hillslope[J]. Geomorphology, 2000,32(3):385-415.
    [10]吴彦,刘世全,付秀琴,等.植物根系提高土壤水稳性团粒含量的研究[J].土壤侵蚀与水土保持学报,1997,3(1):45-49.
    [11]马祥华,焦菊英,温仲明,等.黄土丘陵沟壑区退耕地植被恢复中土壤物理特性变化研究[J].水土保持研究,2005,12(1):17-21.
    [12]张宝军,唐崟,芦红超,等.土地利用方式对土壤大团聚体的影响[J].安徽农业科学,2013,41(12):5306-5308.
    [13]关松,窦森,胡永哲,等.添加玉米秸秆对黑土团聚体碳氮分布的影响[J].水土保持学报,2010,24(4):187-191.
    [14]佀国涵,赵书军,王瑞,等.连年翻压绿肥对植烟土壤物理及生物性状的影响[J].植物营养与肥料学报,2014,20(4):905-912.
    [15]崔荣美,李懦,韩清芳,等.不同有机肥培肥对旱作农田土壤团聚体的影响[J].西北农林科技大学学报:自然科学版,2011,39(11):124-132.
    [16]鲍士旦.土壤农化分析[M].北京:中国农业出版社,2005.
    [17]王英俊,李同川,张道勇,等.间作白三叶对苹果/白三叶复合系统土壤团聚体及团聚体碳含量的影响[J].草地学报,2013,21(3):485-493.
    [18]刘文利,吴景贵,傅民杰,等.种植年限对果园土壤团聚体分布与稳定性的影响[J].水土保持学报,2014,28(2):129-135.
    [19]何淑勤,郑子成,宫渊波,等.不同退耕模式下土壤水稳性团聚体及其有机碳分布特征[J].水土保持学报,2011,25(5):229-233.
    [20]曾全超,李娅芸,刘雷,等.黄土高原草地植被土壤团聚体特征与可蚀性分析[J].草地学报,2014,22(4):743-749.
    [21]王英俊.生草对渭北苹果园土壤团聚体及其有机C∶N的影响[D].陕西杨凌:西北农林科技大学,2013.
    [22]Yoder R E. A direct method of aggregate analysis of soils and a study of the physical nature of erosion losses[J]. Agronomy Journal, 1936,28(5):337-351.
    [23]王海霞,孙红霞,韩清芳,等.免耕条件下秸秆覆盖对旱地小麦田土壤团聚体的影响[J].应用生态学报,2012,23(4):1025-1030.
    [24]Six J, Elliott E T, Paustian K. Soil structure and soil organic matter: II. A normalized stability index and the effect of mineralogy[J]. Soil Science Society of America Journal, 2000,64(3):1042-1049.
    [25]Six J, Bossuyt H, Degryze S, et al. A history of research on the link between (micro)aggregates, soil biota, and soil organic matter dynamics[J]. Soil and Tillage Research, 2004,79(1):7-31.
    [26]程乙,任昊,刘鹏,等.不同栽培管理模式对农田土壤团聚体组成及其碳、氮分布的影响[J].应用生态学报,2016,27(11):3521-3528.
    [27]宫阿都,何毓蓉.金沙江干热河谷区退化土壤结构的分形特征研究[J].水土保持学报,2001,15(3):112-115.
    [28]Salako F K, Hauser S. Influence of different fallow management systems on stability of soil aggregates in Southern Nigeria[J]. Communications in Soil Science & Plant Analysis, 2001,32(9/10):1483-1498.
    [29]秦瑞杰,郑粉莉,卢嘉.草本植物生长发育对土壤团聚体稳定性影响的试验研究[J].水土保持研究,2011,18(3):141-144.
    [30]Barthès B, Roose E. Aggregate stability as an indicator of soil susceptibility to runoff and erosion; validation at several levels[J]. Catena, 2002,47(2):133-149.
    [31]郭伟,史志华,陈利顶,等.红壤表土团聚体粒径对坡面侵蚀过程的影响[J].生态学报,2007,27(6):2516-2522.
    [32]Wischmeier W H, Smith D D. A universal soil-loss equation to guide conservation farm planning[J]. Transactions Int. congr. soil Sci, 1960,1:418-425.
    [33]Renard K G, Foster G R, Weesies G A, et al. Predicting soil erosion by water: a guide to conservation planning with the Revised Universal Soil Loss Equation(RUSLE)[Z]. Agricultural Handbook, 1997.
    [34]郑海金,杨洁,喻荣岗,等.红壤坡地土壤可蚀性K值研究[J].土壤通报,2010,41(2):425-428.
    [35]梁音,刘宪春,曹龙熹,等.中国水蚀区土壤可蚀性K值计算与宏观分布[J].中国水土保持,2013(10):35-40.
    [36]闫峰陵,史志华,蔡崇法,等.红壤表土团聚体稳定性对坡面侵蚀的影响[J].土壤学报,2007,44(4):577-583.
    [37]陈正发,史东梅,谢均强,等.紫色土旱坡地土壤团聚体稳定性特征对侵蚀过程的影响[J].中国农业科学,2011,44(13):2721-2729.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700