用户名: 密码: 验证码:
玉米光合生理参数对全生育期干旱与拔节后干旱过程的响应
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Response of photosynthetic physiological parameters of maize to drought during the whole growth period and after the jointing stage
  • 作者:宋贺 ; 蒋延玲 ; 许振柱 ; 周广胜
  • 英文作者:SONG He;JIANG Yanling;XU Zhenzhu;ZHOU Guangsheng;State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences;College of Life Sciences, University of Chinese Academy of Sciences;Chinese Academy of Meteorological Sciences;
  • 关键词:全生育期干旱 ; 拔节后干旱过程 ; 玉米 ; 光合生理 ; 响应机理
  • 英文关键词:drought during the whole growth period;;drought after jointing stage;;maize;;photosynthetic physiology;;response mechanism
  • 中文刊名:生态学报
  • 英文刊名:Acta Ecologica Sinica
  • 机构:中国科学院植物研究所植被与环境变化国家重点实验室;中国科学院大学生命科学学院;中国气象科学研究院;
  • 出版日期:2019-01-10 09:10
  • 出版单位:生态学报
  • 年:2019
  • 期:07
  • 基金:国家自然科学基金项目(41330531);; 公益性行业(气象)科研专项(GYHY201506019)
  • 语种:中文;
  • 页:143-153
  • 页数:11
  • CN:11-2031/Q
  • ISSN:1000-0933
  • 分类号:S513
摘要
作物对干旱的响应已有大量研究,但对不同强度干旱及其持续时间响应过程的研究甚少。通过开展全生育期干旱和拔节后干旱过程的影响模拟实验,试图揭示夏玉米叶片光合生理特性对不同干旱强度及其持续时间的响应机理,为我国北方地区玉米育种和节水灌溉提供科学的理论依据。研究结果表明:1)干旱显著降低了玉米叶片的叶绿素相对含量(SPAD),但两种干旱处理下的SPAD随干旱持续时间的延长而出现响应差异并逐渐扩大;2)不同强度、不同持续时间的干旱处理均明显抑制了玉米叶片的最大净固碳速率(A_(sat)),拔节后的轻度干旱过程对玉米叶片A_(sat)的影响最大;3)拔节期后重度干旱过程处理下玉米叶片虽保持较高的光合速率,但叶片数量急剧减少,而且一直保持在营养生长阶段,没有产量;4)在两种干旱处理方式下,玉米叶片PSII的光化学效率(F_v′/F_m′)均到灌浆中期才开始出现显著降低现象,表现出了较强的干旱适应能力;5)SPAD与叶片光合及叶绿素荧光参数均存在较强的相关关系,可作为评价玉米叶片光合性能对干旱胁迫敏感性的指示性指标;6)不仅干旱强度影响玉米叶片的生理生态过程,干旱发生的时间也具有重要的影响。
        Drought is one of the major factors inhibiting maize growth and yield. Thus, studying the effects of drought on maize is particularly important. However, there are few studies examining the effects of the timing and intensity of droughts on maize leaf photosynthetic characteristics, and how the stability and size of maize yields can be hampered in such dry environments. A field automatic rain-shelter was used in this study, and five irrigation treatments, including control and drought stress, were designed. The study aimed to provide a theoretical scientific basis for maize breeding and water-saving irrigation in North China. 1) Drought during the whole growth period and after the jointing stage significantly reduced the leaf chlorophyll relative content(SPAD) of maize, and severe drought treatments had a greater effect on SPAD than mild drought treatments. A difference was observed in the response trends under different drought treatments along with the duration of drought, reflecting differences in the adaptive response of maize leaves to drought. The SPAD of maize leaves under drought after the jointing stage was higher than that in the leaves under drought for the whole growth period, revealing a significant effect of adequate water supply before jointing stage on nutrient accumulation for later leaf growth. 2) Drought during the whole growth period and drought after the jointing stage significantly inhibited the light-saturated net photosynthetic rate(A_(sat)). Severe drought had a greater impact on A_(sat) than mild drought in the whole growth period. However, mild drought after the jointing stage had a greater influence on A_(sat) than severe drought, indicating a difference in the responses of A_(sat) to different drought treatments. The A_(sat) under mild and severe drought after the jointing stage was higher than that under severe drought during the whole growth period, revealing that adequate water supply before the jointing stage is very important for maize to adapt to later drought conditions and enhance its photosynthesis. 3) Although the leaves kept a higher A_(sat) under severe drought conditions after the jointing stage, the total number of leaves per plant reduced sharply, resulting in lower photosynthetic product. The whole maize plant maintained its vegetative growth stage in the whole growth period but with no yield. 4) Under all drought treatments, the photochemical efficiency of PSII in the light(F_v′/F_m′) presented the same response regularity. A significant decrease was not observed until the mid-milking period, and then a gradual increase was seen in the late milking period, suggesting a stronger adaptive capacity to drought. 5) SPAD had strong correlations with the leaf photosynthetic and chlorophyll fluorescence parameters, revealing that SPAD could reflect changes in the PSII photochemical activity and photosynthetic capacity of maize under drought conditions, which could be used as an indicator of maize′s sensitivity to drought stress. 6) Not only the drought intensity, but also the timing of drought occurrence significantly affected the physiological and ecological processes of maize leaves; therefore, the two factors should be taken into consideration together in future drought studies.
引文
[1]Boyer J S.Plant productivity and environment.Science,1982,218(4571):443-448.
    [2]周广胜.气候变化对中国农业生产影响研究展望.气象与环境科学,2015,38(1):80-94.
    [3]Shahidi R,Yoshida J,Cougnon M,Reheul D,Van Labeke M C.Morpho-physiological responses to dehydration stress of perennial ryegrass and tall fescue genotypes.Functional Plant Biology,2017,44(6):612-623.
    [4]周曙东,周文魁,林光华,乔辉.未来气候变化对我国粮食安全的影响.南京农业大学学报:社会科学版,2013,13(1):56-65.
    [5]陈雪.干旱胁迫对不同大麦生长发育、产量和品质的影响[D].杭州:浙江大学,2015.
    [6]Campos H,Cooper M,Habben J E,Edmeades G O,Schussler J R.Improving drought tolerance in maize:a view from industry.Field Crops Research,2004,90(1):19-34.
    [7]Lobell D B,Bnziger M,Magorokosho C,Vivek B.Nonlinear heat effects on African maize as evidenced by historical yield trials.Nature Climate Change,2011,1(1):42-45.
    [8]Lobell D B,Roberts M J,Schlenker W,Braun N,Little B B,Rejesus R M,Hammer G L.Greater sensitivity to drought accompanies maize yield increase in the U.S.Midwest.Science,2014,344(6183):516-519.
    [9]矫梅燕,周广胜,陈振林.农业应对气候变化蓝皮书:气候变化对中国农业影响评估报告(No.1).北京:社会科学文献出版社,2014:1-6.
    [10]Avramova V,AbdElgawad H,Zhang Z F,Fotschki B,Casadevall R,Vergauwen L,Knapen D,Taleisnik E,Guisez Y,Asard H,Beemster G TS.Drought induces distinct growth response,protection,and recovery mechanisms in the maize leaf growth zone.Plant Physiology,2015,169(2):1382-1396.
    [11]FAO.FAOSTAT.(2017-04-01)[2017-06-20].http://www.fao.org/faostat/en/#data.
    [12]中华人民共和国国家统计局.中国统计年鉴.北京:中国统计出版社,2013.
    [13]Beale C V,Morison J I L,Long S P.Water use efficiency of C4perennial grasses in a temperate climate.Agricultural and Forest Meteorology,1999,96(1/3):103-115.
    [14]Leakey A D B,Bernacchi C J,Dohleman F G,Ort D R,Long S P.Will photosynthesis of maize(Zea mays)in the US Corn Belt increase in future[CO2]rich atmospheres?An analysis of diurnal courses of CO2uptake under free-air concentration enrichment(FACE).Global Change Biology,2004,10(6):951-962.
    [15]Long S P,Zhu X G,Naidu S L,Ort D R.Can improvement in photosynthesis increase crop yields?Plant Cell and Environment,2006,29(3):315-330.
    [16]Xu Z Z,Zhou G S,Han G X,Li Y J.Photosynthetic potential and its association with lipid peroxidation in response to high temperature at different leaf ages in maize.Journal of Plant Growth Regulation,2011,30(1):41-50.
    [17]潘根兴.气候变化对中国农业生产的影响分析与评估.北京:中国农业出版社,2010.
    [18]温克刚,谢璞.中国气象灾害大典:北京卷.北京:气象出版社,2005.
    [19]齐伟,张吉旺,王空军,刘鹏,董树亭.干旱胁迫对不同耐旱性玉米杂交种产量和根系生理特性的影响.应用生态学报,2010,21(1):48-52.
    [20]胡瑞法,Meng Erika C H,张世煌,石晓华.采用参与式方法评估中国玉米研究的优先序.中国农业科学,2004,37(6):781-787.
    [21]纪瑞鹏,车宇胜,朱永宁,梁涛,冯锐,于文颖,张玉书.干旱对东北春玉米生长发育和产量的影响.应用生态学报,2012,23(11):3021-3026.
    [22]白莉萍,隋方功,孙朝晖,葛体达,吕银燕,周广胜.土壤水分胁迫对玉米形态发育及产量的影响.生态学报,2004,24(7):1556-1560.
    [23]白向历,孙世贤,杨国航,刘明,张振平,齐华.不同生育时期水分胁迫对玉米产量及生长发育的影响.玉米科学,2009,17(2):60-63.
    [24]黄晓俊,于飞,敖芹.干旱对玉米生长及产量影响的试验研究.贵州气象,2012,36(6):25-28.
    [25]马旭凤,于涛,汪李宏,石喜,郑灵祥,王密侠,姚雅琴,蔡焕杰.苗期水分亏缺对玉米根系发育及解剖结构的影响.应用生态学报,2010,21(7):1731-1736.
    [26]赵丽英,邓西平,山仑.开花前后变水条件对春小麦的补偿效应.应用与环境生物学报,2002,8(5):478-481.
    [27]袁永慧,邓西平,黄明丽,白登忠.生物节水中的补偿效应与根系调控研究.中国农业科技导报,2003,5(6):24-28.
    [28]姜鹏,李曼华,薛晓萍,李鸿怡.不同时期干旱对玉米生长发育及产量的影响.中国农学通报,2013,29(36):232-235.
    [29]刘祖贵,陈金平,段爱旺,孟兆江,张寄阳,刘战东.不同土壤水分处理对夏玉米叶片光合等生理特性的影响.干旱地区农业研究,2006,24(1):90-95.
    [30]张仁和,郑友军,马国胜,张兴华,路海东,史俊通,薛吉全.干旱胁迫对玉米苗期叶片光合作用和保护酶的影响.生态学报,2011,31(5):1303-1311.
    [31]于文颖,纪瑞鹏,冯锐,赵先丽,张玉书.不同生育期玉米叶片光合特性及水分利用效率对水分胁迫的响应.生态学报,2015,35(9):2902-2909.
    [32]赵文赛,孙永林,刘西平.干旱-复水-再干旱处理对玉米光合能力和生长的影响.植物生态学报,2016,40(6):594-603.
    [33]Chaves M M.Effects of water deficits on carbon assimilation.Journal of Experimental Botany,1991,42(1):1-16.
    [34]Aminian R,Mohammadi S,Hoshmand S,Khodombashi M.Chromosomal analysis of photosynthesis rate and stomatal conductance and their relationships with grain yield in wheat(Triticum aestivum L.)under water-stressed and well-watered conditions.Acta Physiologiae Plantarum,2011,33(3):755-764.
    [35]康绍忠,史文娟,胡笑涛,梁银丽.调亏灌溉对于玉米生理指标及水分利用效率的影响.农业工程学报,1998,14(4):82-87.
    [36]Hirasawa T,Hsiao T C.Some characteristics of reduced leaf photosynthesis at midday in maize growing in the field.Field Crops Research,1999,62(1):53-62.
    [37]张喜英,裴冬,由懋正.几种作物的生理指标对土壤水分变动的阈值反应.植物生态学报,2000,24(3):280-283.
    [38]杨德光,沈秀瑛,赵天宏,马秀芳.玉米旱害生理研究进展.作物杂志,2001,(5):1-4.
    [39]刘吉利,赵长星,吴娜,王月福,王铭伦.苗期干旱及复水对花生光合特性及水分利用效率的影响.中国农业科学,2011,44(3):469-476.
    [40]常敬礼,杨德光,谭巍巍,陆月赏.水分胁迫对玉米叶片光合作用的影响.东北农业大学学报,2008,39(11):1-5.
    [41]Ephrath J E,Hesketh J D.The effects of drought stress on leaf elongation,photosynthesis and transpiration rates in maize(Zea mays L.)leaves.Photosynthetic,1991,25(4):607-619.
    [42]任三学,赵花荣,姜朝阳,谭凯炎.土壤水分胁迫对冬小麦旗叶光合特性的影响.气象科技,2010,38(1):114-119.
    [43]麻雪艳,周广胜.夏玉米苗期主要生长指标的土壤水分临界点确定方法.生态学杂志,2017,36(6):1761-1768.
    [44]Xu Z Z,Zhou G S,Wang Y L,Han G X,Li Y J.Changes in chlorophyll fluorescence in maize plants with imposed rapid dehydration at different leaf ages.Journal of Plant Growth Regulation,2008,27(1):83-92.
    [45]于鸿莹,陈莹婷,许振柱,周广胜.内蒙古荒漠草原植物叶片功能性状关系及其经济谱分析.植物生态学报,2014,38(10):1029-1040.
    [46]宋贺,于鸿莹,陈莹婷,许振柱,周广胜.北京植物园不同功能型植物叶经济谱.应用生态学报,2016,27(6):1861-1869.
    [47]Genty B,Briantais J M,Baker N R.The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence.Biochimica et Biophysica Acta(BBA)-General Subjects,1989,990(1):87-92.
    [48]van Kooten O,Snel J F H.The use of chlorophyll fluorescence nomenclature in plant stress physiology.Photosynthesis Research,1990,25(3):147-150.
    [49]Maxwell K,Johnson G N.Chlorophyll fluorescence-a practical guide.Journal of Experimental Botany,2000,51(345):659-668.
    [50]王接弟.干旱对玉米光合生理及相关酶基因表达的影响[D].石河子:石河子大学,2014.
    [51]Sharp R E,Poroyko V,Hejlek L G,Spollen W G,Springer G K,Bohnert H J,Nguyen H T.Root growth maintenance during water deficits:physiology to functional genomics.Journal of Experimental Botany,2004,55(407):2343-2351.
    [52]侯兴亮,李景富,许向阳.番茄耐弱光性的研究进展.中国蔬菜,1999,1(4):48-51.
    [53]姜卫兵,高光林,俞开锦,汪良驹,马凯.水分胁迫对果树光合作用及同化代谢的影响研究进展.果树学报,2002,19(6):416-420.
    [54]Massacci A,Nabiev S M,Pietrosanti L,Nematov S K,Chernikova T N,Thor K,Leipner J.Response of the photosynthetic apparatus of cotton(Gossypium hirsutum)to the onset of drought stress under field conditions studied by gas-exchange analysis and chlorophyll fluorescence imaging.Plant Physiology and Biochemistry,2008,46(2):189-195.
    [55]张仁和,马国胜,柴海,张兴华,路海东,薛吉全.干旱胁迫对玉米苗期叶绿素荧光参数的影响.干旱地区农业研究,2010,28(6):170-176.
    [56]沈艳,谢应忠.干旱对紫花苜蓿叶绿素含量与水分饱和亏缺的影响.宁夏农学院学报,2004,25(2):25-28.
    [57]罗华建,刘星辉.水分胁迫对枇杷光合特性的影响.果树科学,1999,16(2):126-130.
    [58]高杰,张仁和,王文斌,李志伟,薛吉全.干旱胁迫对玉米苗期叶片光系统II性能的影响.应用生态学报,2015,26(5):1391-1396.
    [59]井大炜,邢尚军,马海林,杜振宇,刘方春,马丙尧.I-107欧美杨对不同强度干旱胁迫的形态与生理响应.东北林业大学学报,2014,42(1):10-13,56-56.
    [60]谢文华,陈琴,白璐.干旱胁迫下3种驱蚊植物营养生长期叶绿素含量的变化.中国测试,2017,43(6):55-59.
    [61]吴玲,李志辉,吴际友,刘球,程勇,廖德志,黄明军.干旱胁迫对青冈栎种源叶绿素含量与抗氧化酶活性的影响.中南林业科技大学学报,2017,37(6):51-55.
    [62]孟雪莉,王月,陈盛相,李建华.干旱胁迫对3个茶树品种含水量与叶绿素含量的影响.贵州农业科学,2018,46(2):34-36.
    [63]Efeo■lu B,Ekmek■i Y,■i■ek N.Physiological responses of three maize cultivars to drought stress and recovery.South African Journal of Botany,2009,75(1):34-42.
    [64]Pinheiro C,Chaves M M.Photosynthesis and drought:can we make metabolic connections from available data?Journal of Experimental Botany,2011,62(3):869-882.
    [65]李英,马兴祥,丁文魁,王鹤龄.干旱胁迫对玉米生长发育及其生理生化特性的影响.山东农业科学,2014,46(9):46-48,68-68.
    [66]王慧,周广胜,蒋延玲,石耀辉,许振柱.降水与CO2浓度协同作用对短花针茅光合特性的影响.植物生态学报,2012,36(7):597-606.
    [67]Saeidi M,Moradi F,Abdoli M.Impact of drought stress on yield,photosynthesis rate,and sugar alcohols contents in wheat after anthesis in semiarid region of Iran.Arid Land Research and Management,2017,31(2):204-218.
    [68]尤鑫,龚吉蕊.叶绿素荧光动力学参数的意义及实例辨析.西北林业科学,2012,41(5):90-94.
    [69]Lu C M,Zhang J H.Effects of water stress on photosystem II photochemistry and its thermostability in wheat plants.Journal of Experimental Botany,1999,50(336):1199-1206.
    [70]White A J,Critchley C.Rapid light curves:a new fluorescence method to assess the state of the photosynthetic apparatus.Photosynthesis Research,1999,59(1):63-72.
    [71]Lal A,Ku M S B,Edwards G E.Analysis of inhibition of photosynthesis due to water stress in the C3species Hordeum vulgare and Vicia faba:electron transport,CO2fixation and carboxylation capacity.Photosynthesis Research,1996,49(1):57-69.
    [72]Demmig-Adams B,Adams III W W,Barker D H,Logan B A,Bowling D R,Verhoeven A S.Using chlorophyll fluorescence to assess the fraction of absorbed light allocated to thermal dissipation of excess excitation.Physiologia Plantarum,1996,98(2):253-264.
    [73]彭海欢.缺钾对水稻叶片光合特性、抗氧化酶的影响及其诱导早衰机制的研究[D].杭州:浙江大学,2006.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700