用户名: 密码: 验证码:
城市食物-能源-水关联关系:概念框架与研究展望
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Urban food-energy-water (FEW) nexus: conceptual frameworks and prospects
  • 作者:张力小 ; 张鹏鹏 ; 郝岩 ; 唐守娟 ; 刘耕源
  • 英文作者:ZHANG Lixiao;ZHANG Pengpeng;HAO Yan;TANG Shoujuan;LIU Gengyuan;State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Beijing Normal University;
  • 关键词:食物-能源-水关联关系 ; 城市生态系统 ; 概念框架 ; 集成管理
  • 英文关键词:food-energy-water nexus;;city;;conceptual framework;;integrated management
  • 中文刊名:生态学报
  • 英文刊名:Acta Ecologica Sinica
  • 机构:北京师范大学环境学院环境模拟与污染控制国家重点联合实验室;
  • 出版日期:2019-02-23
  • 出版单位:生态学报
  • 年:2019
  • 期:04
  • 基金:国家自然科学基金国际(地区)合作与交流项目(51661125010);; 国家重点研发计划项目(2017YFC0505703);; 环境模拟与污染控制国家重点联合实验室项目(17L02ESPC)
  • 语种:中文;
  • 页:23-32
  • 页数:10
  • CN:11-2031/Q
  • ISSN:1000-0933
  • 分类号:X24
摘要
食物、能源和水(Food, Energy and Water, FEW)是人类生存与发展不可或缺的基础性资源,且三者之间存在密切的关联关系(Nexus),即其中任何一项资源的生产与供给均依赖于另外两项资源。FEW关联关系作为应对全球人口增长、资源短缺和生态环境恶化等问题的系统性管理理念,已引起国际学术界与实践管理领域的广泛关注。然而,目前对FEW关联关系仍然缺乏统一和清晰的界定,现有研究大多是基于不同角度理解与量化"关联关系"。城市作为全球资源消费的主阵地,其FEW关联关系更为复杂,亟待建立针对城市生态系统的概念框架。对FEW关联关系的发展历程、概念表述以及研究方法等方面进行全面回顾和系统分析。在此基础上,从"资源依存"、"资源供给"和"系统集成"等3个视角构建了城市FEW关联关系的概念框架,并进一步阐述FEW关联关系未来研究的重点方向——"系统性表征"、"时空演化"与"协同管理",为城市优化资源配置,实现集成管理提供一种新思路和定量化的参考依据。
        Food, energy, and water(FEW) are three kinds of essential and indispensable resources to human beings. Moreover, they are interlinked with one another, and changing the components of one system may lead to ripple effects(desired or undesired) on the other two systems. Currently, the FEW nexus is increasingly concerned by scholars and policy makers. The FEW nexus is a key concept to address the issues of population boom, resource scarcity, and environmental degradation. However, there still lacks consistent and explicit cognitions of the FEW nexus. Most of existing studies focus on the characterization and quantification of the FEW nexus from multiple perspectives. Little attention is paid to the universal experience in synergy management, especially for urban systems. Cities are critical carriers of the population and economic activities and are also important contributors to the FEW consumption. They are essential for the sustainable development and are thus inextricable parts of the FEW nexus. However, urban FEW nexus has been rarely concerned by existing studies. This study presented a comprehensive review to track the progress of the FEW nexus. We also proposed a three-dimensional conceptual framework of the urban FEW nexus to achieve urban sustainable development goals, including resource interdependency, resource provision, and system integration. Finally, we discussed future directions of urban FEW nexus studies.
引文
[1] Food and Agriculture Organization of the United Nations. The Water-Energy-Food Nexus: A new Approach in Support of Food Security and Sustainable Agriculture. Rome: FAO, 2014.
    [2] Karabulut A, Egoh B N, Lanzanova D, Grizzetti B, Bidoglio G, Pagliero L, Bouraoui F, Aloe A, Reynaud A, Maes J, Vandecasteele I, Mubareka S. Mapping water provisioning services to support the ecosystem-water-food-energy nexus in the Danube river basin. Ecosystem Services, 2016, 17: 278-292.
    [3] United States National Intelligence Council. Global Trends 2030: Alternative Worlds. US: USNIC, 2012.
    [4] Bazilian M, Rogner H, Howells M, Hermann S, Arent D, Gielen D, Steduto P, Mueller A, Komor P, Tol R S J, Yumkella K K. Considering the energy, water and food nexus: towards an integrated modelling approach. Energy Policy, 2011, 39(12): 7896-7906.
    [5] United Nations. World Urbanization Prospects: The 2014 Revision Highlights. New York: UN, 2014.
    [6] Hake J F, Schl?r H, Schürmann K, Venghaus S. Ethics, sustainability and the water, energy, food nexus approach-a new integrated assessment of urban systems. Energy Procedia, 2016, 88: 236-242.
    [7] Walker R V, Beck M B, Hall J W, Dawson R J, Heidrich O. The energy-water-food nexus: strategic analysis of technologies for transforming the urban metabolism. Journal of Environmental Management, 2014, 141: 104-115.
    [8] Heard B R, Miller S A, Liang S, Xu M. Emerging challenges and opportunities for the food-energy-water nexus in urban systems. Current Opinion in Chemical Engineering, 2017, 17: 48-53.
    [9] Martin-Nagle R, Howard E, Wiltse A, Duncan D. Bonn 2011 Conference The Water, Energy and Food Security Nexus——Solutions for the Green Economy. Bonn, 2011. (2018-12-1) [2018-6-15]. https://www.water-energy-food.org/fileadmin/user_upload/files/documents/bonn2011_nexussynopsis.pdf.
    [10] Hoff H. Understanding the Nexus. Background paper for the Bonn 2011 Conference: The Water, Energy and Food Security Nexus. Bonn: SEI, 2011.
    [11] World Economic Forum. Water Security: The Water-Food-Energy-Climate Nexus. Davos: Washington, DC, 2011.
    [12] United Nations Economic Commission for Europe. Reconciling Resource Uses in Transboundary Basins: Assessment of the Water-Food-Energy-Ecosystems Nexus. Genva: UNECE, 2017.
    [13] Meadows D H, Meadows D L, Randers J, Behrens Ⅲ W W. The Limits to Growth: A Report for the Club of Rome′s Project on the Predicament of Mankind. 5th ed. New York: Universe Books, 1972.
    [14] Levinson A, Rosenberg C, Yansane A. The political economy of energy and agriculture in the third world//Lockeretz W, ed. Agriculture and Energy. New York: Academic Press, 1977: 639-655.
    [15] Allan J A. Virtual water-the water, food, and trade nexus. Useful concept or misleading metaphor? Water International, 2003, 28(1): 106-113.
    [16] United States Department of Energy. Climate and Energy-Water-Land System Interactions. Washington: United States Department of Energy, 2012.
    [17] United Nations Economic and Social Commission for Asia and the Pacific. Water, Food and Energy Nexus in Asia and the Pacific. Bangkok: UNESCAP, 2013.
    [18] Taniguchi M, Allen D, Gurdak J J. Optimizing the water-energy-food nexus in the Asia-Pacific ring of fire. Eos, Transactions American Geophysical Union, 2013, 94(47): 435-435.
    [19] Endo A, Tsurita I, Burnett K, Orencio P M. A review of the current state of research on the water, energy, and food nexus. Journal of Hydrology: Regional Studies, 2017, 11: 20-30.
    [20] Mayor B, López-Gunn E, Villarroya F I, Montero E. Application of a water-energy-food nexus framework for the Duero river basin in Spain. Water International, 2015, 40(5/6): 791-808.
    [21] Yumkella K K, Yillia P T. Framing the water-energy nexus for the post-2015 development agenda. Aquatic Procedia, 2015, 5: 8-12.
    [22] Howarth C, Monasterolo I. Understanding barriers to decision making in the UK energy-food-water nexus: the added value of interdisciplinary approaches. Environmental Science & Policy, 2016, 61: 53-60.
    [23] Zhang X D, Vesselinov V V. Integrated modeling approach for optimal management of water, energy and food security nexus. Advances in Water Resources, 2017, 101: 1-10.
    [24] Hellegers P J G J, Zilberman D, Steduto P, McCornick P G. Interactions between water, energy, food and environment: evolving perspectives and policy issues. Water Policy, 2008, 10(S1): 1-10.
    [25] Siddiqi A, Anadon L D. The water-energy nexus in Middle East and North Africa. Energy Policy, 2011, 39(8): 4529-4540.
    [26] Hamiche A M, Stambouli A B, Flazi S. A review of the water-energy nexus. Renewable and Sustainable Energy Reviews, 2016, 65: 319-331.
    [27] Al-Saidi M, Elagib N A. Towards understanding the integrative approach of the water, energy and food nexus. Science of the Total Environment, 2017, 574: 1131-1139.
    [28] Asian Development Bank. Asian Water Development Outlook 2013. Manila: Asian Development Bank, 2013.
    [29] International Renewable Energy Agency. Renewable Energy in the Water, Energy & Food Nexus. Abu Dhabi: IRENA, 2015.
    [30] Fang D L, Chen B. Linkage analysis for the water-energy nexus of city. Applied Energy, 2017, 189: 770-779.
    [31] Schl?r H, Venghaus S, Hake J F. The FEW-Nexus city index-measuring urban resilience. Applied Energy, 2018, 210: 382-392.
    [32] White D J, Hubacek K, Feng K S, Sun L X, Meng B. The water-energy-food nexus in East Asia: a tele-connected value chain analysis using inter-regional input-output analysis. Applied Energy, 2018, 210: 550-567.
    [33] Owen A, Scott K, Barrett J. Identifying critical supply chains and final products: an input-output approach to exploring the energy-water-food nexus. Applied Energy, 2018, 210: 632-642.
    [34] 陈冬冬, 高旺盛. 近30年来中国农村居民食物消费的生态足迹分析. 中国农业科学, 2010, 43(8): 1738-1747.
    [35] Roy P, Nei D, Orikasa T, Xu Q Y, Okadome H, Nakamura N, Shiina T. A review of life cycle assessment (LCA) on some food products. Journal of Food Engineering, 2009, 90(1): 1-10.
    [36] Ma A J, Zhao H Z, Ren F Z. Study on food life cycle carbon emissions assessment. Procedia Environmental Sciences, 2010, 2: 1983-1987.
    [37] Pacetti T, Lombardi L, Federici G. Water-energy nexus: a case of biogas production from energy crops evaluated by water footprint and life cycle assessment (LCA) methods. Journal of Cleaner Production, 2015, 101: 278-291.
    [38] Li X, Feng K S, Siu Y L, Hubacek K. Energy-water nexus of wind power in China: the balancing act between CO2 emissions and water consumption. Energy Policy, 2012, 45: 440-448.
    [39] Salmoral G, Yan X Y. Food-energy-water nexus: a life cycle analysis on virtual water and embodied energy in food consumption in the Tamar catchment, UK. Resources, Conservation and Recycling, 2018, 133: 320-330.
    [40] Leontief W W. Quantitative input and output relations in the economic systems of the United States. The Review of Economics and Statistics, 1936, 18(3): 105-125.
    [41] Zhang L X, Hu Q H, Zhang F. Input-output modeling for urban energy consumption in Beijing: dynamics and comparison. PLoS One, 2014, 9(3): e89850.
    [42] Chen W M, Wu S M, Lei Y L, Li S T. China′s water footprint by province, and inter-provincial transfer of virtual water. Ecological Indicators, 2017, 74: 321-333.
    [43] Zhang B, Qu X, Meng J, Sun X D. Identifying primary energy requirements in structural path analysis: a case study of China 2012. Applied Energy, 2017, 191: 425-435.
    [44] Zhang P P, Zhang L X, Tian X, Hao Y, Wang C B. Urban energy transition in China: insights from trends, socioeconomic drivers, and environmental impacts of Beijing. Energy Policy, 2018, 117: 173-183.
    [45] 钱明霞, 路正南,王健. 基于假设抽取法的产业部门碳排放关联分析. 中国人口?资源与环境, 2013, 23(9): 34-41.
    [46] 蔡国英, 赵继荣. 基于假设抽取法的黑河流域中游行业用水关联分析. 生态学报, 2015, 35(12): 4215-4223.
    [47] Liang Q M, Fan Y, Wei Y M. Multi-regional input-output model for regional energy requirements and CO2 emissions in China. Energy Policy, 2007, 35(3): 1685-1700.
    [48] Huysman S, Schaubroeck T, Goralczyk M, Schmidt J, Dewulf J. Quantifying the environmental impacts of a European citizen through a macro-economic approach, a focus on climate change and resource consumption. Journal of Cleaner Production, 2016, 124: 217-225.
    [49] Ozturk I. Sustainability in the food-energy-water nexus: evidence from BRICS (Brazil, the Russian Federation, India, China, and South Africa) countries. Energy, 2015, 93: 999-1010.
    [50] Willis H H, Groves D G, Ringel J S, Mao Z M, Efron S, Abbott M. Developing the Pardee RAND Food–Energy–Water Security Index: Toward A Global Standardized, Quantitative, and Transparent Resource Assessment. Santa Monica, CA: RAND Corporation, 2016.
    [51] Abbott M, Bazilian M, Egel D, Willis H H. Examining the food-energy-water and conflict nexus. Current Opinion in Chemical Engineering, 2017, 18: 55-60.
    [52] 米红, 周伟. 未来30年我国粮食、淡水、能源需求的系统仿真. 人口与经济, 2010, (1): 1-7.
    [53] Halbe J, Pahl-Wostl C, Lange M A, Velonis C. Governance of transitions towards sustainable development-the water-energy-food nexus in Cyprus. Water International, 2015, 40(5/6): 877-894.
    [54] Veldhuis A J, Yang A D. Integrated approaches to the optimisation of regional and local food-energy-water systems. Current Opinion in Chemical Engineering, 2017, 18: 38-44.
    [55] Dai J Y, Wu S Q, Han G Y, Weinberg J, Xie X H, Wu X F, Song X Q, Jia B Y, Xue W Y, Yang Q Q. Water-energy nexus: a review of methods and tools for macro-assessment. Applied Energy, 2018, 210: 393-408.
    [56] Zhou Y C, Li H P, Wang K, Bi J. China′s energy-water nexus: spillover effects of energy and water policy. Global Environmental Change, 2016, 40: 92-100.
    [57] Ge J P, Lei Y L. Policy options for non-grain bioethanol in China: insights from an economy-energy-environment CGE model. Energy Policy, 2017, 105: 502-511.
    [58] Karlberg L, Hoff H, Amsalu T, Andersson K, Binnington T, Flores-López F, de Bruin A, Gebreyohannis Gebrehiwot S, Gedif B, Johnson O, zur Heide F, Osbeck M, Young C. Tackling complexity: understanding the food-energy-environment nexus in Ethiopia′s lake Tana sub-basin. Water Alternatives, 2015, 8(1): 710-734.
    [59] Hermann S, Rogner H H, Howells M, Young C, Fischer G, Welsch M. In the CLEW model-developing an integrated tool for modelling the interrelated effects of climate, land use, energy, and water (CLEW)//Proceedings of the 6th Dubrovnik Conference on Sustainable Development of Energy, Water and Environment Systems. Dubrovnik, Croatia: UNESCO, 2011.
    [60] Howells M, Hermann S, Welsch M, Bazilian M, Segerstr?m R, Alfstad T, Gielen D, Rogner H, Fischer G, van Velthuizen H, Wiberg D, Young C, Roehrl R A, Mueller A, Steduto P, Ramma I. Integrated analysis of climate change, land-use, energy and water strategies. Nature Climate Change, 2013, 3(7): 621-626.
    [61] Daher B T, Mohtar R H. Water-energy-food (WEF) Nexus Tool 2.0: guiding integrative resource planning and decision-making. Water International, 2015, 40(5/6): 748-771.
    [62] Flammini A, Puri M, Pluschke L, Dubois O. Walking the Nexus Talk: Assessing the Water-Energy-Food Nexus in the Context of the Sustainable Energy for All Initiative. Rome: FAO, 2014.
    [63] Leung Pah Hang M Y, Martinez-Hernandez E, Leach M, Yang A D. Designing integrated local production systems: a study on the food-energy-water nexus. Journal of Cleaner Production, 2016, 135: 1065-1084.
    [64] Rasul G, Sharma B. The nexus approach to water-energy-food security: an option for adaptation to climate change. Climate Policy, 2016, 16(6): 682-702.
    [65] Romero-Lankao P, Gnatz D M. Conceptualizing urban water security in an urbanizing world. Current Opinion in Environmental Sustainability, 2016, 21: 45-51.
    [66] Artioli F, Acuto M, McArthur J. The water-energy-food nexus: an integration agenda and implications for urban governance. Political Geography, 2017, 61: 215-223.
    [67] 李桂君, 李玉龙, 贾晓菁, 杜磊, 黄道涵. 北京市水-能源-粮食可持续发展系统动力学模型构建与仿真. 管理评论, 2016, 28(10): 11-26.
    [68] Ramaswami A, Boyer D, Nagpure A S, Fang A, Bogra S, Bakshi B, Cohen E, Rao-Ghorpade A. An urban systems framework to assess the trans-boundary food-energy-water nexus: implementation in Delhi, India. Environmental Research Letters, 2017, 12(2): 025008.
    [69] Sherwood J, Clabeaux R, Carbajales-Dale M. An extended environmental input-output lifecycle assessment model to study the urban food-energy-water nexus. Environmental Research Letters, 2017, 12(10): 105003.
    [70] Martinez-Hernandez E, Leach M, Yang A D. Understanding water-energy-food and ecosystem interactions using the nexus simulation tool NexSym. Applied Energy, 2017, 206: 1009-1021.
    [71] Li Y, Beeton R J S, Sigler T, Halog A. Modelling the transition toward urban sustainability: a case study of the industrial city of Jinchang, China. Journal of Cleaner Production, 2016, 134: 22-30.
    [72] Romero-Lankao P, McPhearson T, Davidson D J. The food-energy-water nexus and urban complexity. Nature Climate Change, 2017, 7(4): 233-235.
    [73] Weitz N, Strambo C, Kemp-Benedict E, Nilsson M. Closing the governance gaps in the water-energy-food nexus: insights from integrative governance. Global Environmental Change, 2017, 45: 165-173.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700