用户名: 密码: 验证码:
膦酸基硅氧烷改性SPEEK质子交换膜的制备及性能
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Preparation and Properties of Phosphonic Acid Functionalized Siloxane-Modified SPEEK Proton Exchange Membrane
  • 作者:朱希 ; 沈春晖 ; 金怀洋 ; 程向泽
  • 英文作者:Zhu Xi;Shen Chunhui;Jin Huaiyang;Cheng Xiangze;School of Material Science & Engineering, Wuhan University of Technology;
  • 关键词:磺化聚醚醚酮 ; 膦酸基硅氧烷 ; 双重质子导体 ; 质子交换膜
  • 英文关键词:sulfonated poly(ether ether ketone);;phosphonic acid functionalized siloxane;;dual proton conductors;;proton exchange membranes
  • 中文刊名:工程塑料应用
  • 英文刊名:Engineering Plastics Application
  • 机构:武汉理工大学材料科学与工程学院;
  • 出版日期:2019-04-10
  • 出版单位:工程塑料应用
  • 年:2019
  • 期:04
  • 语种:中文;
  • 页:15-22
  • 页数:8
  • CN:37-1111/TQ
  • ISSN:1001-3539
  • 分类号:TM911.4
摘要
由羟基乙叉二膦酸(HEDP)和(3-异氰酸丙基)三乙氧基硅烷(IPTS)合成的膦酸基硅氧烷被掺杂进磺化聚醚醚酮(SPEEK)基体中,并采用溶胶–凝胶法制备出了一系列质子交换膜材料。膜的结构特点通过傅立叶变换红外光谱和扫描电子显微镜进行研究。结果表明,HEDP以C—O—C键的形式成功地固定于IPTS水解缩聚形成的Si—O—Si交联网络中且膦酸基硅氧烷(HEDP–IPTS)在SPEEK基体中均匀分布。所制备的膜还展现出优异的抗氧化性、力学性能和尺寸稳定性,甚至热稳定性可达225℃。此外,得益于磺酸基团和膦酸基团这两种质子传导单元的存在,膦酸基硅氧烷中P∶Si为3∶4的WPEM–3膜在80℃、相对湿度100%和140℃、相对湿度10%条件下的质子电导率分别达到11.42×10~(–2) S/cm和5.59×10~(–2) S/cm。该新型膜材料有望在宽温域运行环境中展现出巨大的潜力。
        A series of proton exchange membranes of incorporating phosphonic acid functionalized siloxane from 1–Hydroxyethylidene-1,1-diphosphonic acid(HEDP) and 3–Isocyanatopropyltriethoxysilane(IPTS) into the matrix of sulfonated poly(ether ether ketone)(SPEEK) were prepared by sol-gel methods. The structural characteristics of membranes were investigated using FTIR and SEM,indicating that HEDP was successfully immobilized into cross-linking networks of Si—O—Si formed by hydrolysispolycondensation of IPTS in the form of C—O—C bond,and phosphonic acid functionalized siloxane(HEDP–IPTS) was dispersed uniformly in polymeric matrix. The obtained membranes also exhibite superior oxidative resistance,mechanical properties and dimensional stability,even the thermal stability is up to 225 ℃. Moreover,bene?ting from the existence of dual proton conducting units of sulfonic acid groups and phosphonic acid groups,the proton conductivities of WPEM–3 membrane whose molar ratio of P to Si is 3∶4, reaches 11.42×10~(–2) S/cm at 80℃ and relative humidity(RH) of 100%,5.59×10~(–2) S/cm at 140℃ and relative humidity(RH) of 10%,respectively. Therefore,this novel membrane materials will act as a potential candidate operating at wide temperature environment.
引文
[1]邹才能,赵群,张国生,等.能源革命:从化石能源到新能源[J].天然气工业,2016,36(1):1-10.Zou Caineng,Zhao Qun,Zhang Guosheng,et al.Energy revolution:From fossil energy to new energy[J].Natural Gas Industry,2016,36(1):1-10.
    [2]Steele B C H,Heinzel A.Materials for fuel-cell technologies[J].Nature,DOI:10.1038/35104620.
    [3]石建恒,于宏燕,曾心苗.燃料电池质子交换膜的研究现状[J].膜科学与技术,2009,29(2):94-98.Shi Jianheng,Yu Hongyan,Zeng Xinmiao.Research status of proton exchange membrane for fuel cell[J].Membrane Science and Technology,2009,29(2):94-98.
    [4]Forouzandeh F,Li Xiaoan,Banham D W,et al.Improving the corrosion resistance of proton exchange membrane fuel cell carbon supports by pentafluorophenyl surface functionalization[J].Journal of Power Sources,2018,378:732-741.
    [5]Kim K,Jung B K,Ko T,et al.Comb-shaped polysulfones containing sulfonated polytriazole side chains for proton exchange membranes[J].Journal of Membrane Science,2018,554:232-243.
    [6]Mauritz K A,Moore R B.State of understanding of Nafion[J].Chemical Reviews,2004,104(10):4 535-4 585.
    [7]Shao Yuyuan,Yin Geping,Wang Zhenbo,et al.Proton exchange membrane fuel cell from low temperature to high temperature:Material challenges[J].Journal of Power Sources,2007,167(2):235-242.
    [8]钱红雪,何少剑,林俊,等.成膜温度对磺化聚醚醚酮质子交换膜性能的影响[J].中国科技论文,2014,9(3):366-369.Qian Hongxue,He Shaojian,Lin Jun,et al.Effect of film-forming temperature on the performance of sulfonated poly(ether ether ketone)proton exchange membrane[J].China Science Paper,2014,9(3):366-369.
    [9]Maab H,Nunes S P.Modified SPEEK membranes for direct ethanol fuel cell[J].Journal of Power Sources,2010,195(13):4 036-4 042.
    [10]Vona M L D,Ahmed Z,Bellitto S,et al.SPEEK-TiO2 nanocomposite hybrid proton conductive membranes via in situ mixed sol-gel process[J].Journal of Membrane Science,2007,296(1):156-161.
    [11]Sahin A.The development of speek/PVA/TEOS blend membrane for proton exchange membrane fuel cells[J].Electrochimica Acta,2018,271:127-136.
    [12]Wu Hong,Cao Ying,Li Zhen,et al.Novel sulfonated poly(ether ether ketone)/phosphonic acid-functionalized titania nanohybrid membrane by an in situ,method for direct methanol fuel cell[J].Journal of Power Sources,2015,273:544-553.
    [13]Zhang Bei,Cao Ying,Jiang Shengtao,et al.Enhanced proton conductivity of Nafion nanohybrid membrane incorporated with phosphonic acid functionalized graphene oxide at elevated temperature and low humidity[J].Journal of Membrane Science,2016,518:243-253.
    [14]Atanasov V,Oleynikov A,Xia Jiabing,et al.Phosphonic acid functionalized poly(pentafluorostyrene)as polyelectrolyte membrane for fuel cell application[J].Journal of Power Sources,2017,343:364-372.
    [15]Li Wei,Shen Chunhui,Gao Shanjun,et al.Preparation and characterization of phosphonic acid functionalized siloxane/polyimide composite proton exchange membranes[J].Solid State Ionics,2016,287:1-7.
    [16]Chen Cheng,Shen Chunhui,Kong Gengjin,et al.High temperature proton exchange membranes prepared from epoxycyc lohexylethyltrimethoxysilane and amino trimethylene phosphonic acid as anhydrous proton conductors[J].Materials Chemistry and Physics,2013,140(1):24-30.
    [17]Kato M,Katayama S,Sakamoto W,et al.Synthesis of organosiloxane-based inorganic/organic hybrid membranes with chemically bound phosphonic acid for proton-conductors[J].Electrochimica Acta,2007,52(19):5 924-5 931.
    [18]Shen Chunhui,Wycisk R,Pintauro P N.High performance electrospun bipolar membrane with a 3D junction[J].Energy&Environmental Science,2017,10(6):1 435-1 442.
    [19]Ludue?a G A,Kühne T D,Sebastiani D.Mixed grotthuss and vehicle transport mechanism in proton conducting polymers from ab initio molecular dynamics simulations[J].Chemistry of Materials,DOI:10.1021/cm102674u.
    [20]Kreuer K D,Paddison S J,Spohr E,et al.Transport in proton conductors for fuel-cell applications:simulations,elementary reactions,and phenomenology[J].Chemical Reviews,2004,104(10):4 637-4 678.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700