用户名: 密码: 验证码:
电石渣-煤基固废混合胶凝体系制硅酸钙板的试验
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Experiment on preparation of calcium silicate board based on a mixed gel system of carbide slag and coal-based solid waste
  • 作者:魏丁一 ; 杜翠凤 ; 李彦鑫 ; 张连富
  • 英文作者:WEI Ding-yi;DU Cui-feng;LI Yan-xin;ZHANG Lian-fu;State Key Laboratory of High-Efficient Mining and Safety of Metal Mines,Ministry of Education;School of Civil and Recourses Engineering,University of Science and Technology Beijing;Mining Engineering Institute,Inner Mongolia Science and Technology University;
  • 关键词:粉煤灰 ; 混合胶凝体系 ; 废物协同利用 ; 抗折强度 ; 水化产物
  • 英文关键词:fly ash;;mixed gelling system;;waste synergistic utilization;;bending strength;;hydrate product
  • 中文刊名:工程科学学报
  • 英文刊名:Chinese Journal of Engineering
  • 机构:金属矿山高效开采与安全教育部重点实验室;北京科技大学土木与资源工程学院;内蒙古科技大学矿业研究院;
  • 出版日期:2019-01-09 14:48
  • 出版单位:工程科学学报
  • 年:2019
  • 期:01
  • 基金:国家自然科学基金资助项目(51274023)
  • 语种:中文;
  • 页:56-62
  • 页数:7
  • CN:10-1297/TF
  • ISSN:2095-9389
  • 分类号:X705
摘要
为减少制备硅酸钙板对矿物原浆资源的损耗和提高对固体废弃物的协同利用效果,试验以电石渣-煤基固废胶凝体系为原料来研制高强度的纯固废硅酸钙板,并通过热重-差示扫描量热法、X射线衍射测试来分析硅酸钙板中生成的主要矿物成分及不同配比对硅酸钙板的强度变化关系.研究表明:在水灰比为0. 3的条件下,使用电石渣完全替代水泥,将粉煤灰和硅灰按1∶1的质量比互掺调制所得的混合胶凝体系最终制得托贝莫来石型纯固废硅酸钙样板.在硅灰占原料的质量分数为0~10%范围内,样板抗折强度随硅灰添量增加而升高,硅灰添量为10%时样板达到最大抗折强度,不同粒径的原料颗粒相互填充,板内晶体与水化胶凝体相互咬合,最终使得样板力学性能得到大幅提升;样板的抗折强度随着Na OH添量的增加呈现先增后降的趋势,Na OH添加质量分数为4%时样板板面平滑,强度达到最大值11. 8 MPa,该添量为Na OH的最佳添量,通过扫描电镜分析发现加入4%Na OH时对该胶凝体系的水化反应起到最佳激发作用,且样板料坯的微观结构对其最终的力学性能有重要影响,但不起决定性作用,其中决定其最终强度的是板坯内水化胶凝体的数量、形态以及其相互间的联结方式.
        The purpose of this study was to reduce the loss of raw material calcium in the preparation of calcium silicate board and improve the synergistic utilization efficiency of solid waste. This test used a carbide slag-coal-based solid waste gelling system as the raw material to develop high-strength pure solid waste calcium silicate board. The main mineral components produced in the calcium silicate board and the variation in calcium silicate board strength with different proportioning were analyzed using thermogravimetry-differential scanning calorimetry( TG-DSC) and X-ray diffraction( XRD) test. The results show that the use of carbide slag completely substitutes cement. Fly ash and silica fume were mixed in mass ratio of 1∶ 1 to prepare a mixed gelling system. Finally,the tobago mullite pure solid-waste calcium silicate template could be made with a water-cement ratio of 0. 3. When silica fume was added in the mass percent of 0 – 10%,the bending strength of the template strengthened. Flexural strength of the calcium silicate board reached maximum when the amount of silica fume was 10%. Here,raw material particles composed of various dimensions were fully mixed. Also,crystals and hydrated gels closely interacted. Thus,the mechanical properties of the calcium silicate board significantly improved. Thebending strength of the calcium silicate board tends to increase first,and then decrease with increasing Na OH dosage. The surface of the calcium silicate board was smooth when the mass percent of Na OH was 4% and mechanical strength reached a maximum of 11. 8 MPa. This proved to be the optimum amount of added Na OH. The hydration reaction of the gelling system can achieve the best stimulating effect when 4% Na OH is added using scanning electron microscopy analysis. Moreover,the microstructure of material billets has an important impact on the final mechanical properties. However,the mechanical strength of the pre-cured calcium silicate board is not decisive of the final mechanical properties. The internal hydration gel number,shape,and connection are linked to each other inside the calcium silicate board; this is the key factor in determining the final mechanical properties of the calcium silicate board.
引文
[1] Hamilton A,Hall C. Physicochemical characterization of a hydrated calcium silicate board material. J Build Phys,2005,29(1):9
    [2] Lin S H,Pan C L,Hsu W T. Monotonic and cyclic loading tests for cold-formed steel wall frames sheathed with calcium silicate board. Thin-Walled Struct,2014,74:49
    [3] Nithyadharan M,Kalyanaraman V. Experimental study of screw connections in CFS-calcium silicate board wall panels. ThinWalled Struct,2011,49(6):724
    [4] Liu X T,Wang B D,Xiao Y F,et al. Study of preparation process optimization of calcium silicate board by using JMP. New Build Mater,2015,42(1):83(刘晓婷,王宝冬,肖永丰,等.粉煤灰提铝残渣制备硅酸钙板的工艺优化研究.新型建筑材料,2015,42(1):83)
    [5] Liang X R,Zhang Y Y,Xiang X,et al. Preparation of calcium silicate board by using diatomite. China Nonmetallic Min Ind,2014(5):15(梁兴荣,张英英,向兴,等.硅藻土制备硅酸钙板的研究.中国非金属矿工业导刊,2014(5):15)
    [6] Liang X R,Xue J,Cao H. Study of calcium silicate board prepared by phosphorus slag-phosphorus tailings. China Concr Cem Prod,2016(3):87(梁兴荣,薛俊,曹宏.磷渣-磷尾矿制备硅酸钙板的研究.混凝土与水泥制品,2016(3):87)
    [7] Wang Y P,Tong G Q,Feng Q M. Study on calcium silicate board reinforced with fiber brucite. New Build Mater,2003(6):8(王玉平,童光庆,冯启明.纤维水镁石增强硅酸钙板的研究.新型建筑材料,2003(6):8)
    [8] Ouyang D,Yi C. Experimental study on the preparation of fiber calcium silicate board from kaolin scraps. Bull Chin Ceram Soci,2013,32(10):1945(欧阳东,易超.利用高岭土下脚料制备纤维硅酸钙板的实验研究.硅酸盐通报,2013,32(10):1945)
    [9] Ouyang D,Yi C. Experimental study on the preparation of fiber reinforced calcium silicate board with ceramic polished slag. Bull Chin Ceram Soc,2014,33(2):415(欧阳东,易超.利用陶瓷抛光渣制备纤维增强硅酸钙板的试验研究.硅酸盐通报,2014,33(2):415)
    [10] Zhan J Y,Yang F H,Geng C L,et al. Mechanical activation treatment of molybdenum tailings and influence of molybdenum tailings on performance of calcium silicate boards. China Concr Cem Prod,2017(6):56(战佳宇,杨飞华,耿春雷,等.钼尾矿机械活化处理及对硅酸钙板性能的影响.混凝土与水泥制品,2017(6):56)
    [11] Dai M,Wang Y,Wei Z,et al. Preparation and properties of humidity controlling board based on diatomaceous earth. Bull Chin Ceram Soc,2016,35(1):231(戴民,王羽,魏征,等.硅藻土基调湿板材的水热合成试验研究.硅酸盐通报,2016,35(1):231)
    [12] Li Y X,Cao Y D,Zhang J S,et al. Current situation of comprehensive utilization of silica fume in China and analysis of existing problems. Appl Chem Ind,2017,46(10):2031(李彦鑫,曹永丹,张金山,等.我国硅灰的综合利用现状及存在问题浅析.应用化工,2017,46(10):2031)
    [13] Li Y. Mechanism and test of mineral admixture filling in cement mortar. Henan Sci,2013,31(1):91(李滢.矿物掺合料在水泥砂浆中的填充机理及试验研究.河南科学,2013,31(1):91)
    [14] Xu Z F,Yang Z,Zhang J,et al. Preparation technology and properties of sludge-high calcium coal waste geopolymer. Acta Mater Compos Sin,2013,30(5):113(徐子芳,杨政,张娟,等.污泥-高钙煤系废物制备地聚合物的技术与性能.复合材料学报,2013,30(5):113)
    [15] Hou Y F,Wang D M,Li Q,et al. Effect of water glass performance on fly ash-based geopolymers. J Chin Ceram Soc,2008,36(1):61(侯云芬,王栋民,李俏,等.水玻璃性能对粉煤灰基矿物聚合物的影响.硅酸盐学报,2008,36(1):61)
    [16] Chen Y X,Wu F,Hu Y R. Theoretical and experimental analysis of improving the packing density of powder. Coal Convers,2012,35(1):37(陈延信,吴峰,胡亚茹.提高粉体堆积密度的理论与实验研究.煤炭转化,2012,35(1):37)
    [17] Nie Y M,Liu S X,Zhang J X,et al. The research progress and developing prospect of fly ash activity. Fly Ash Comprehens Utiliz,2013(3):52(聂轶苗,刘淑贤,张晋霞,等.粉煤灰的活性研究及进展.粉煤灰综合利用,2013(3):52)
    [18] Qiao C Y,Ni W,Wang C L. Autoclaving reaction activity of four kinds of silicate minerals. J Univ Sci Technol Beijing,2014,36(6):736(乔春雨,倪文,王长龙.四种硅酸盐矿物的蒸压反应活性.北京科技大学学报,2014,36(6):736)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700