用户名: 密码: 验证码:
预点火湍流对正戊烷云雾爆炸参数的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Influence of pre-ignition turbulence intensity on n-pentane mists explosion
  • 作者:刘雪岭 ; 张奇
  • 英文作者:LIU Xueling;ZHANG Qi;School of Mining Engineering, Guizhou Institute of Technology;State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology;
  • 关键词:湍流强度 ; 云雾浓度 ; 云雾粒径 ; 爆炸参数 ; 火焰传播
  • 英文关键词:turbulence intensity;;mist concentration;;particle size of mists;;explosive parameters;;flame propagation
  • 中文刊名:爆炸与冲击
  • 英文刊名:Explosion and Shock Waves
  • 机构:贵州理工学院矿业工程学院;北京理工大学爆炸科学与技术国家重点实验室;
  • 出版日期:2018-03-26 16:44
  • 出版单位:爆炸与冲击
  • 年:2019
  • 期:03
  • 基金:贵州省科技支撑计划(201805330030620551)
  • 语种:中文;
  • 页:4-13
  • 页数:10
  • CN:51-1148/O3
  • ISSN:1001-1455
  • 分类号:X932
摘要
以正戊烷云雾为研究对象,进行预点火湍流对云雾爆炸参数影响规律的实验研究。首先通过不同气动压力进行喷雾,获得平均特征直径(SMD)分别为21.21、14.51和8.64μm的正戊烷云雾,并得到不同气动压力预点火的湍流均方根速度;随后在20 L云雾爆炸参数测量系统中实验获得预点火湍流对正戊烷云雾蒸发速率、爆炸超压峰值、压力上升速率和火焰传播延迟时间的影响。结果表明:(1)对于圆柱形罐体对称式双喷头分散系统,流场环境可近似认定为零平均速率湍流场;在0.4、0.6和0.8 MPa的气动压力喷雾50 ms的分散作用下,在100~250 ms内,湍流均方根速度在1.0~6.2 m/s范围内,平均湍流积分尺度在40~72 mm范围内,湍流最大湍流尺度的雷诺数在8 000~15 000范围内,柯尔莫哥洛夫微尺度在0.03~0.1 mm范围内;(2)对于较小的液滴群,随湍流强度的增加,液滴群的蒸发速率有更为明显的提升;(3)对比云雾三种SMD,粒径8.64μm的超压峰值与最大压力上升速率随湍流强度增长趋势更显著,并发生爆炸强度显著提升现象,即存在"转变区域"(transition range)现象;(4)对于SMD在8~22μm范围内,湍流均方根速度处于1.0~4.0 m/s时为火焰传播延迟时间的低增长阶段,湍流均方根速度处于4.0~6.2 m/s时为火焰传播延迟时间的高增长阶段,湍流强度与火焰传播延迟时间在相应的两个湍流强度阶段范围内呈线性增长。
        In this paper we investigated the influence of the pre-ignition turbulence intensity on the explosion parameters of n-pentane mists. By using 0.4, 0.6 and 0.8 MPa of pneumatic pressure spray, we obtained n-pentane mists with the Sauter mean diameter(SMD) of 21.21, 14.51 and 8.64 μm, and at the same time, the pre-ignition turbulence intensity under different pneumatic pressures. Then, in a 20 L mists explosion parameter measuring system for experimental research, we aquired the influence of the preignition turbulence on the evaporation rate, the peak explosion overpressure, the explosion pressure rise rate and the ignition delay time of n-pentane mists. The results showed that, the average turbulence velocity of the enviromental fluid field was zero. The smaller the droplet size was, the more obvious was the increase of the evaporation rate of the mists with the increase of the turbulence intensity. At the same time, for the SMDs of 14.51 and 21.21 μm, the peak pressure and the maximum pressure rise rate increased more obviously with the SMD of 8.64 μm, and the explosion intensity was significantly strong, suggesting the existence of a transition range. For the SMDs in the range of 8-22 μm, the mean square turbulence velocity in 1.0-4.0 m/s was the low growth stage of the flame propagation delay time, whereas that in 4.0-6.2 m/s was the high growth stage. The turbulence intensity and the flame propagation delay time exhibited a linear growth in both stages.
引文
[1]白春华,梁慧敏,李建平.云雾爆轰[M].北京:科学出版社,2012:1.BAI Chunhua,LIANG Huiming,LI Jianping.Spray detonation[M].Beijing:Science Press,2012:1.
    [2]姚干兵,解立峰,刘家骢.液体碳氢燃料云雾爆轰特性的实验研究[J].爆炸与冲击,2006,26(6):543-549.YAO Ganbing,XIE Lifeng,LIU Jiacong.Experimental study on detonation characteristics of liquid fuel-air mixtures[J].Explosion and Shock Waves,2006,26(6):543-549.
    [3]沈晓波,鲁长波,李斌,等.液体燃料云雾爆轰参数实验[J].爆炸与冲击,2012,32(1):108-112.SHEN Xiaobo,LU Changbo,LI Bin,et al.An experimental study of detonation parameters of liquid fuel drops cloud[J].Explosion and Shock Waves,2012,32(1):108-112.
    [4]LIU Q M,BAI C H,D W X,et al.Deflagration-to-detonation transition in isopropyl nitrate mist/air mixtures[J].Combustion,Explosion,and Shock Waves,2011,47(4):448-456.
    [5]LIU Q M,BAI C H,JIANG L,et al.Deflagration-to-detonation transition in nitromethane mist/aluminum dust/air mixtures[J].Combustion and Flame,2010,157(1):106-117.
    [6]MOEN I.Transition to detonation in fuel-air explosive clouds[J].Journal of Hazardous Materials,1993,33(2):159-192.
    [7]STAMPS D W,SLEZAK S E,TIESZEN S R.Observations of the cellular structure of fuel-air detonations[J].Combustion and Flame,2006,144(1):289-298.
    [8]SANTON R C.Mist fires and explosions-an incident survey[C]//IChemE Hazards XXI Symposium&Workshop.Manchester,2009.
    [9]ZABETAKIS M G.Flammability characteristics of combustible gases and vapors:BULL-627[R].Washington DC:USBM,1965.
    [10]BURGOYNE J H,COHEN L.The effect of drop size on flame propagation in liquid aerosols[J].Proceedings of the Royal Society of London:Series A:Mathematical and Physical Sciences,1954,225(1162):375-392.
    [11]FAETH G M,OLSON D R.The ignition of hydrocarbon fuel droplets in air[R].SAE,1968.
    [12]WILLIAMS F A.Mono-disperse spray deflagration[J].Progress in Astronautics and Rocketry,1960,2:223.
    [13]王悦,白春华.乙醚云雾场燃爆参数实验研究[J].爆炸与冲击,2016,36(4):497-502.WANG Yue,BAI Chunhua.Experimental research on explosion parameters of diethyl ether mist[J].Explosion and Shock Waves,2016,36(4):497-502.
    [14]王悦,白春华,李斌,等.正癸烷云雾气液两相浓度对其燃爆参数的影响[J].含能材料,2015,23(7):663-669.WANG Yue,BAI Chunhua,LI Bin,et al.Influence of the gas-liquid two-phase concentrations of n-decane sprays on its explosion parameters[J].Chinese Journal of Energetic Materials,2015,23(7):663-669.
    [15]LIU X L,ZHANG Q,WANG Y.Influence of vapor-liquid two-phase n-hexane/air mixtures on flammability limit and minimum ignition energy[J].Industrial&Engineering Chemistry Research,2014,53(32):12856-12865.
    [16]LIU X L,WANG Y,ZHANG Q.A study of the explosion parameters of vapor-liquid two-phase JP-10/air mixtures[J].Fuel,2016,165:279-288.
    [17]LIU X L,ZHANG Q,WANG Y.Influence of particle size on the explosion parameters in two-phase vapor-liquid n-hexane/air mixtures[J].Process Safety and Environmental Protection,2015,95:184-194.
    [18]LIU X L,ZHANG Q,WANG Y.Influence of vapor-liquid two-phase n-heptane on the explosion parameters in air[J].Combustion Science and Technology,2015,187(12):1879-1904.
    [19]SCHEID M,GEI?LER A,KRAUSE U.Experiments on the influence of pre-ignition turbulence on vented gas and dust explosions[J].Journal of Loss Prevention in the Process Industries,2006,19(2-3):194-199.
    [20]ANDREWS G E,DRADLEY D,LWAKABAMBA S B.Turbulence and turbulent flame propagation-a critical appraisal[J].Combustion and Flame,1975,24:285-304.
    [21]BRADLEY D,MITCHESON A.The venting of gaseous explosions in spherical vessels:I-theory[J].Combustion and flame,1978,32:221-236.
    [22]CHIPPET S.Modeling of vented deflagrations[J].Combustion and Flame,1984,55(2):127-140.
    [23]LIU X L,ZHANG Q.Influence of turbulent flow on the explosion parameters of micro-and nano-aluminum powder-air mixtures[J].Journal of Hazardous Materials,2015,299:603-617.
    [24]PRTERS N.The turbulent burning velocity for large-scale and small-scale turbulence[J].Journal of Fluid Mechanics,1999,384:107-132.
    [25]TENNEKES H.Simple model for the small-scale structure of turbulence[J].Physics of Fluids,1968,11:669-671.
    [26]POLYMEROPOULOS C E.Flame propagation in aerosols of fuel droplets,fuel vapor and air[J].Combustion Science and Technology,1984,40(5/6):217-232.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700