用户名: 密码: 验证码:
低温等离子体组合光催化氧化降解气相甲苯的协同效应:臭氧的作用(英文)
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Synergetic effect between non-thermal plasma and photocatalytic oxidation on the degradation of gas-phase toluene: Role of ozone
  • 作者:叶昊灵 ; 刘逸秋 ; 陈思 ; 王海强 ; 刘振 ; 吴忠标
  • 英文作者:Haoling Ye;Yiqiu Liu;Si Chen;Haiqiang Wang;Zhen Liu;Zhongbiao Wu;Key Laboratory of Environment Remediation and Ecological Health of Ministry of Education, College of Environmental & Resources Sciences, Zhejiang University;Zhejiang Provincial Engineering Research Center of Industrial Boiler & Furnace Flue Gas Pollution Control;Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University;
  • 关键词:低温等离子体 ; 光催化氧化 ; 协同效应 ; 臭氧 ; 甲苯
  • 英文关键词:Non-thermal plasma;;Photocatalytic oxidation;;Synergetic effect;;Ozone;;Toluene
  • 中文刊名:催化学报
  • 英文刊名:Chinese Journal of Catalysis
  • 机构:浙江大学环境与资源学院污染环境修复与生态健康教育部重点实验室;浙江省工业锅炉炉窑烟气污染控制工程技术研究中心;浙江大学生物与工程学院生物质化工教育部重点实验室;
  • 出版日期:2019-04-04
  • 出版单位:催化学报
  • 年:2019
  • 期:05
  • 基金:supported by the National Key Research and Development Plan of China (2016YFC0204700);; National Natural Science Foundation of China (NSFC-51578488);; Zhejiang Provincial “151” Talents Program (2013);; Key Project of Zhejiang Provincial Science and Technology Program;; the Program for Zhejiang Leading Team of S&T Innovation (2013TD07);; the Changjiang Scholar Incentive Program (2009)~~
  • 语种:英文;
  • 页:81-90
  • 页数:10
  • CN:21-1601/O6
  • ISSN:0253-9837
  • 分类号:O643.32;O644.1
摘要
挥发性有机物(VOCs)是导致大气污染的重要成因,它不仅会直接威胁到人体健康和生态环境,而且是PM2.5,臭氧和光化学烟雾的重要前驱体.近年来,低温等离子体(NTP)技术与光催化氧化(PCO)技术等被视作降解VOCs的有效技术而得到广泛关注.NTP技术的停留时间短,能耗低,对于VOCs的降解具有较高的效率,但是其矿化率较低,而且会产生臭氧等副产物.PCO技术能够通过羟基自由基将VOCs完全氧化为CO_2和H_2O,但是受限于低量子效率,电子空穴对的快速复合以及光催化剂的失活.因此,将NTP与PCO相结合是提升VOCs的去除率和矿化率,降低副产物产量的有效策略.本文以甲苯为VOCs的典型物,TiO_2为光催化剂,采用NTP与PCO的组合工艺降解气相甲苯.为了探索NTP与PCO之间的协同效应,我们对单一工艺(O_3,UV,NTP,PCO)与组合工艺(O_3+TiO_2,O_3+UV,NTP+UV,O_3+PCO,NTP+PCO)在甲苯去除率、CO与CO_2选择性、臭氧利用率以及副产物的产生等方面的性能进行了深入考察.结果表明,NTP与PCO组合工艺的甲苯去除率为80.2%,远高于单一工艺中NTP的18.8%和PCO的13.4%,同时也明显高于其他组合工艺.此外,NTP与PCO组合工艺的CO_2选择性,矿化率和臭氧利用率也是所有工艺中最优的.傅里叶透射红外光谱和气相色谱-质谱联用结果表明,气相中副产物的产量显著减少;X射线光电子能谱和程序升温脱附-质谱联用的结果表明,吸附于催化剂表面的碳基中间产物的含量也显著下降.结果证明了NTP与PCO两者存在着协同效应,且只有在臭氧,紫外光源和光催化剂三者均存在的情况下才能表现出上述的优异性能.综上,NTP与PCO组合工艺中所展现的协同效应主要归功于NTP中产生的臭氧在PCO中获得有效利用.在这个过程中,臭氧最重要的作用是充当了电子接收剂和牺牲剂,因而能够产生更多的羟基自由基并降低电子-空穴对的复合,从而提升甲苯去除率、CO_2选择性、矿化率和臭氧利用率,并且降低副产物的含量.
        In this study,a hybrid process using non-thermal plasma(NTP)and photocatalytic oxidation(PCO)was adopted for the degradation of gas-phase toluene using TiO_2 as the photocatalyst.To discover the synergetic effect between NTP and PCO,the performances of both sole(O_3,UV,NTP,and PCO)and combined(O_3+TiO_2,O_3+UV,NTP+UV,O_3+PCO,and NTP+PCO)processes were investigated from different perspectives,such as the toluene removal efficiency,selectivity of CO_x,mineralization rate,ozone utilization,and the generation of by-products.The toluene removal efficiency of the combined NTP+PCO process was 80.2%,which was much higher than that of a sole degradation process such as NTP(18.8%)and PCO(13.4%).The selectivity of CO_2 and the ozone utilization efficiency also significantly improved.The amount of by-products in the gas phase and the car-bon-based intermediates adsorbed on the catalyst surface dramatically reduced.The improvement in the overall performances of the combined NTP+PCO process was mainly ascribed to the efficient utilization of ozone in the photocatalytic oxidation,and the ozone further acting as an electron ac-ceptor and scavenger,generating more hydroxyl radicals and reducing the recombination of elec-tron-hole pairs.
引文
[1]F.Ghorbani Shahna,A.Bahrami,I.Alimohammadi,R.Yarahmadi,B.Jaleh,M.Gandomi,H.Ebrahimi,K.Ad‐Din Abedi,J.Hazard.Ma‐ter.,2017,324,544-553.
    [2]H.B.Huang,H.L.Huang,Q.Y.Feng,G.Y.Liu,Y.J.Zhan,M.Y.Wu,H.X.Lu,Y.J.Shu,D.Y.C.Leung,Appl.Catal.B,2017,203,870-878.
    [3]Y.J.Shu,J.Ji,Y.Xu,J.G.Deng,H.B.Huang,M.He,D.Y.C.Leung,M.Y.Wu,S.W.Liu,S.L.Liu,G.Y.Liu,R.J.Xie,Q.Y.Feng,Y.J.Zhan,R.M.Fang,X.G.Ye,Appl.Catal.B,2018,220,78-87.
    [4]G.Y.Liu,J.Ji,H.B.Huang,R.J.Xie,Q.Y.Feng,Y.J.Shu,Y.J.Zhan,R.M.Fang,M.He,S.L.Liu,X.G.Ye,D.Y.C.Leung,Chem.Eng.J.,2017,324,44-50.
    [5]W.B.Li,J.X.Wang,H.Gong,Catal.Today,2009,148,81-87.
    [6]P.Doggali,Y.Teraoka,P.Mungse,I.K.Shah,S.Rayalu,N.Labhsetwar,J.Mol.Catal.A,2012,358,23-30.
    [7]R.M.Fang,H.B.Huang,J.Ji,M.He,Q.Y.Feng,Y.J.Zhan,D.Y.C.Leung,Chem.Eng.J.,2018,334,2050-2057.
    [8]Y.Z.Li,Z.Y.Fan,J.W.Shi,Z.Y.Liu,W.F.Shangguan,Chem.Eng.J.,2014,241,251-258.
    [9]J.L.Wu,Q.B.Xia,H.H.Wang,Z.Li,Appl.Catal.B,2014,156,265-272.
    [10]E.C.Neyts,K.Ostrikov,M.K.Sunkara,A.Bogaerts,Chem.Rev.,2015,115,13408-13446.
    [11]T.Wang,S.Chen,H.Q.Wang,Z.Liu,Z.B.Wu,Chin.J.Catal.,2017,38,793-804.
    [12]A.M.Vandenbroucke,R.Morent,N.De Geyter,C.Leys,J.Hazard.Mater.,2011,195,30-54.
    [13]S.Chen,H.Q.Wang,M.P.Shi,H.L.Ye,Z.B.Wu,Environ.Sci.Tech‐nol.,2018,52,8568-8577.
    [14]O.Debono,V.Hequet,L.Le Coq,N.Locoge,F.Thevenet,Appl.Catal.B,2017,218,359-369.
    [15]A.H.Mamaghani,F.Haghighat,C.S.Lee,Appl.Catal.B,2017,203,247-269.
    [16]D.S.Selishchev,N.S.Kolobov,A.A.Pershin,D.V.Kozlov,Appl.Catal.B,2017,200,503-513.
    [17]S.Weon,J.Kim,W.Choi,Appl.Catal.B,2018,220,1-8.
    [18]Z.Shayegan,C.S.Lee,F.Haghighat,Chem.Eng.J.,2018,334,2408-2439.
    [19]J.Schneider,M.Matsuoka,M.Takeuchi,J.L.Zhang,Y.Horiuchi,M.Anpo,D.W.Bahnemann,Chem.Rev.,2014,114,9919-9986.
    [20]M.N.Lyulyukin,P.A.Kolinko,D.S.Selishchev,D.V.Kozlov,Appl.Catal.B,2018,220,386-396.
    [21]K.P.Yu,Grace W.M.Lee,Appl.Catal.B,2007,75,29-38.
    [22]O.Guaitella,F.Thevenet,E.Puzenat,C.Guillard,A.Rousseau,Appl.Catal.B,2008,80,296-305.
    [23]H.B.Huang,D.Q.Ye,J.Hazard.Mater.,2009,171,535-541.
    [24]A.Maciuca,C.Batiot‐Dupeyrat,J.M.Tatibou?t,Appl.Catal.B,2012,125,432-438.
    [25]A.A.Assadi,A.Bouzaza,C.Vallet,D.Wolbert,Chem.Eng.J.,2014,254,124-132.
    [26]W.Abou Saoud,A.A.Assadi,M.Guiza,A.Bouzaza,W.Aboussaoud,A.Ouederni,I.Soutrel,D.Wolbert,S.Rtimi,Appl.Catal.B,2017,213,53-61.
    [27]F.Thevenet,O.Guaitella,E.Puzenat,J.M.Herrmann,A.Rousseau,C.Guillard,Catal.Today,2007,122,186-194.
    [28]J.Taranto,D.Frochot,P.Pichat,Ind.Eng.Chem.Res.,2007,46,7611-7614.
    [29]S.Gharib‐Abou Ghaida,A.A.Assadi,G.Costa,A.Bouzaza,D.Wol‐bert,Chem.Eng.J.,2016,292,276-283.
    [30]H.B.Huang,W.B.Li,Appl.Catal.B,2011,102,449-453.
    [31]J.Kim,P.Y.Zhang,J.G.Li,J.L.Wang,P.F.Fu,Chem.Eng.J.,2014,252,337-345.
    [32]Z.F.Bian,J.Zhu,J.Wen,F.L.Cao,Y.N.Huo,X.F.Qian,Y.Cao,M.Q.Shen,H.X.Li,Y.F.Lu,Angew.Chem.Int.Ed.,2011,50,1105-1108.
    [33]Y.T.Peng,Z.Y.Le,M.C.Wen,D.Q.Zhang,Z.Chen,H.B.Wu,H.X.Li,Y.F.Lu,Nano Energy,2017,35,44-51.
    [34]Y.J.Zhan,J.Ji,H.B.Huang,M.He,D.Y.C.Leung,S.L.Liu,Y.J.Shu,Q.Y.Feng,R.J.Xie,R.M.Fang,X.G.Ye,Chem.Eng.J.,2018,334,1422-1429.
    [35]J.H.Mo,Y.P.Zhang,Q.J.Xu,Y.F.Zhu,J.J.Lamson,R.Y.Zhao,Appl.Catal.B,2009,89,570-576.
    [36]C.L.Bianchi,S.Gatto,C.Pirola,A.Naldoni,A.Di Michele,G.Cerra‐to,V.Crocellà,V.Capucci,Appl.Catal.B,2014,146(SI),123-130.
    [37]A.M.Harling,D.J.Glover,J.C.Whitehead,K.Zhang,Appl.Catal.B,2009,90,157-161.
    [38]J.Ji,Y.Xu,H.B.Huang,M.He,S.L.Liu,G.Y.Liu,R.J.Xie,Q.Y.Feng,Y.J.Shu,Y.J.Zhan,R.M.Fang,X.G.Ye,D.Y.C.Leung,Chem.Eng.J.,2017,327,490-499.
    [39]H.B.Huang,G.Y.Liu,Y.J.Zhan,Y.Xu,H.X.Lu,H.L.Huang,Q.Y.Feng,M.Y.Wu,Catal.Today,2017,281,649-655.
    [40]M.D.Hernández‐Alonso,I.Tejedor‐Tejedor,J.M.Coronado,M.A.Anderson,Appl.Catal.B,2011,101,283-293.
    [41]A.J.Maira,J.M.Coronado,V.Augugliaro,K.L.Yeung,J.C.Conesa,J.Soria,J.Catal.,2001,202,413-420.
    [42]K.Skalska,J.S.Miller,S.Ledakowicz,Chem.Pap.,2011,65,193-197.
    [43]I.Pitkanen,J.Huttunen,H.Halttunen,R.Vesterinen,J.Therm.Anal.,1999,56,1253-1259.
    [44]J.O.Jo,Q.H.Trinh,S.H.Kim,Y.S.Mok,Catal.Today,2017,310(SI),42-48.
    [45]M.Sleiman,P.Conchon,C.Ferronato,J.M.Chovelon,Appl.Catal.B,2009,86,159-165.
    [46]T.J.Frankcombe,S.C.Smith,J.Phys.Chem.A,2007,111,3686-3690.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700