用户名: 密码: 验证码:
利用生活污水提升厌氧-生物电化学耦合系统处理染料废水的效能及关键功能微生物研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Domestic sewage enhancing azo dye wastewater treatment in anaerobic digestion-bioelectrochemical system and functional microbial community analysis
  • 作者:席尚东 ; 高磊 ; 刘文宗 ; 王爱杰
  • 英文作者:XI Shangdong;GAO Lei;LIU Wenzong;WANG Aijie;State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology;Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences;
  • 关键词:厌氧-生物电化学耦合系统 ; 橙黄II废水 ; 生活污水 ; 电解质 ; 脱色率
  • 英文关键词:anaerobic digestion-bioelectrochemical system;;Orange II contained wastewater;;domestic sewage;;electrolyte;;decolorizing efficiency
  • 中文刊名:环境科学学报
  • 英文刊名:Acta Scientiae Circumstantiae
  • 机构:哈尔滨工业大学城市水资源与水环境国家重点实验室;中国科学院生态环境研究中心环境生物技术重点实验室;
  • 出版日期:2018-04-20 14:40
  • 出版单位:环境科学学报
  • 年:2019
  • 期:02
  • 基金:国家自然科学基金面上项目(No.21577162)
  • 语种:中文;
  • 页:15-25
  • 页数:11
  • CN:11-1843/X
  • ISSN:0253-2468
  • 分类号:X703
摘要
构建了厌氧生物处理过程与生物电化学过程耦合(AD-BES)的废水处理系统,以生活污水为碳源,研究了AD-BES系统对偶氮染料橙黄II的强化去除效果,分析并优化了AD-BES反应器降解橙黄II染料的关键影响因素,包括生活污水所占比例、电解质Na_2SO_4的浓度等因子.结果表明,生活污水作为廉价碳源能够有效提升橙黄II的脱色效率.在8 h降解时间内,生活污水所占比例为1时的脱色效率比生活污水所占比例为1/3时提升了35.8%.进一步研究发现,通过添加电解质Na_2SO_4能够继续提高橙黄II的脱色效率,在0~0.025 mol·L~(-1) Na_2SO_4范围内,随着Na_2SO_4浓度的提高,脱色效率持续升高,通过优化,在0.025 mol·L~(-1)时反应4 h后脱色率达到90.1%,7 h后达到98%,对COD的去除量达到159 mg·L~(-1).通过对碳纤维电极进行扫描电镜(SEM)测试和电极上的生物膜高通量基因测序,发现在微电流刺激下碳纤维电极上快速富集了相对丰度较大的功能菌群,主要包括具有胞外电子传递能力的Proteobacteria(变形菌门)和降解复杂碳源能力的Bacteroidetes(拟杆菌门)中的功能菌属.
        Azo dye reductive dechlorination was studied in a constructed anaerobic digestion-bioelectrochemical system(AD-BES) when applying domestic sewage as an efficient electron donor. The key operation factors that influenced Orange II reduction efficiencies were investigated and were optimized in AD-BES, including the proportion of domestic sewage and concentration of Na_2SO_4 as electrolyte. Results show that decolorization efficiency of Orange II increased along with the increase of domestic sewage proportion. Decolorization rate was increased by 35.8% when sewage inoculation ratio improved to 1 compared with that of 1/3 at 8 h. Using Na_2SO_4 as electrolyte can improve the reduction efficiency and the higher efficiency was achieved when the concentration of Na_2SO_4 was increased among 0~0.025 mol·L~(-1). Under the optimized Na_2SO_4 concentration of 0.025 mol·L~(-1), the decolorization efficiency reached to 90.1% at 4 h, and increased to the maximum of 98% along with COD removal of 159 mg·L~(-1) at 7 h. Scanning electron microscopic observation results show a great deal of microorganisms attached on the carbon fiber. Bacteroidetes and Proteobacteria played important parts in Orange II reduction and extracellular electron transfer.
引文
Ayed L,Mahdhi A,Cheref A,et al.2011.Decolorization and degradation of azo dye Methyl Red by an isolated Sphingomonas paucimobilis: Biotoxicity and metabolites characterization[J].Desalination,274(1):272-277
    Cardenas-Robles A,Martinez E,Rendon-Alcantar I,et al.2013.Development of an activated carbon-packed microbial bioelectrochemical system for azo dye degradation[J].Bioresource Technology,127:37-43
    Cai Z,Zhang W,Ma J,et al.2015.Biodegradation of azo dye disperse Orange S-RL by a newly isolated strain Acinetobacter sp.SRL8[J].Water Environment Research,87(6):516-523
    Chen J,Deng F,Hu Y,et al.2015.Antibacterial activity of graphene-modified anode on Shewanella oneidensis MR-1 biofilm in microbial fuel cell[J].Journal of Power Sources,290:80-86
    Cheng S,Liu H,Logan B E.2006.Increased power generation in a continuous fow MFC with advective flow through the porous anode and reduced electrode spacing[J].Environmental Science Technology, 40(7):2426-2432
    Coma M,Puig S,Pous N,et al.2013.Biocatalysed sulphate removal in a BES cathode[J].Bioresource Technology,130:218-223
    Cui M H,Cui D,Gao L,et al.2016.Efficient azo dye decolorization in a continuous stirred tank reactor(CSTR) with built-in bioelectrochemical system[J].Bioresource Technology,218:1307-1311
    Franciscon E,Zille A,Fantinatti-Garboggini F,et al.2009.Microaerophilic-aerobic sequential decolourization/biodegradation of textile azo dyes by a facultative Klebsiella sp.strain VN-31[J].Process Biochemistry,44(4):446-452
    冯玉杰,李晓岩.2002.电化学技术在环境工程中的应用[M].北京:化学工业出版社
    高立新,王燕,张大全.2010.电化学法处理印染废水[J].印染,(10):12-15
    Hildenbrand S,Schmahl F W,Wodarz R,et al.1999.Azo dyes and carcinogenic aromatic amines in cell culture[J].International Archives of Occupational and Environmental Health,72(3):52-56
    贾雪雪.2017.含硫酸盐有机废水厌氧消化研究[D].杨凌:西北农林科技大学
    Kang C S,Eaktasang N,Kwon D Y,et al.2014.Enhanced current production by Desulfovibrio desulfuricans biofilm in a mediator-less microbial fuel cell[J].Bioresource Technology,165:27-30
    Kim K Y,Yang W,Logan B E.2015.Impact of electrode configurations on retention time and domestic wastewater treatment efficiency using microbial fuel cells[J].Water Research,80:41-46
    Kim S Y,An J Y,Kim B W.2007.Improvement of the decolorization of azo dye by anaerobic sludge bioaugmented with Desulfovibrio desulfuricans[J].Biotechnology & Bioprocess Engineering,12(3):222-227
    Kong D Y,Liang B,Yun H,et al.2015.Cathodic degradation of antibiotics:characterization and pathway analysis[J].Water Research,72:281-292
    Kong F Y,Wang A J,Liang B,et al.2013.Improved azo dye decolorization in a modified sleeve-type bioelectrochemical system[J].Bioresource Technology,143:669-673
    孔春雷,孙晓蕾,周豪,等.2013.菌株Acinetobacter sp.C-2对酸性红GR的脱色研究[J].环境科学与技术,36(3):83-88
    李军,杨秀山,彭永臻.2002.微生物与水处理工程[M].北京:化学工业出版社
    Li T,Guthrie J T.2010.Colour removal from aqueous solutions of metal-complex azo dyes using bacterial cells of Shewanella strain J18 143[J].Bioresource Technology,101(12):4291-4295
    Liu G,Zhou J,Chen C,et al.2013.Decolorization of azo dyes by Geobacter metallireducens[J].Applied Microbiology and Biotechnology,97(17):7935-7942
    Liu T,Yu Y Y,Li D,et al.2016.The effect of external resistance on biofilm formation and internal resistance in Shewanella inoculated microbial fuel cells[J].RSC Advances,6(24):20317-20323
    Liu W Z,Wang A J,Cheng S A,et al.2010.Geochip-based functional gene analysis of anodophilic communities in microbial electrolysis cells under different operational modes[J].Environmental Science & Technology,44:7729-7735
    Mu Y,Rabaey K,Rozendal R A,et al.2009.Decolorization of azo dyes in bioelectrochemical systems[J].Environmental Science & Technology,43(13):5137-5143
    Pankhania I P,Moosavi A N,Hamilton W A,et al.1986.Utilization of cathodic hydrogen by Desulfovibrio vulgaris(Hildenborough)[J].Microbiology,132(12):3357-3365
    Quan X C,Quan Y P,Tao K.2012.Effect of anode aeration on the performance and microbial community of an air-cathode microbial fuel cell[J].Chemical Engineering Journal,210:150-156
    Rasool K,Mahmoud,K A,Lee D S.2015.Influence of co-substrate on textile wastewater treatment and microbial community changes in the anaerobic biological sulfate reduction process[J].Journal of Hazardous Materials,299:453-461
    Shen J,Xu X,Jiang X,et al.2014.Coupling of a bioelectrochemical system for p-nitrophenol removal in an upflow anaerobic sludge blanket reactor[J].Water Research,67:11-18
    王爱杰,王丽燕,任南琪,等.2004.硫酸盐废水生物处理工艺研究进展[J].哈尔滨工业大学学报,36(11):1446-1449
    Wang Y Z,Wang A J,Liu W Z,et al.2013.Accelerated azo dye removal by biocathode formation in single-chamber biocatalyzed electrolysis systems[J].Bioresource Technology,146:740-743
    杨少斌,费学宁,张建博.2008.工业废水处理技术的进展及其发展方向[J].广东化工,35(2):66-69
    钟琼.2008.废水处理技术及设施运行[M].北京:中国环境科学出版社

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700