用户名: 密码: 验证码:
羧甲基纤维素改性凹凸棒石黏土负载纳米铁去除水中Zn(Ⅱ)性能和机制
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Performance and Mechanism for Zn(Ⅱ) Removal from Aqueous Solution by Zero-valent Iron Nanoparticles on Attapulgite Modified by Carboxymethyl Cellulose
  • 作者:范先媛 ; 刘红 ; 龚璇 ; 张家源 ; 廖丽莎
  • 英文作者:FAN Xianyuan;LIU Hong;GONG Xuan;ZHANG Jiayuan;LIAO Lisha;College of Resource and Environmental Engineering, Wuhan University of Science and Technology;Hubei Key Laboratory for Efficient Utilization and Agglomeration of Metallurgic Mineral Resources, Wuhan University of Science and Technology;China Institute of Water Resources and Hydropower Research;
  • 关键词:羧甲基纤维素钠 ; 改性凹凸棒石黏土 ; 纳米铁 ; 负载 ; 重金属
  • 英文关键词:sodium carboxymethyl cellulose;;modified attapulgite;;zero-valent iron nanoparticle;;supported;;heavy metal
  • 中文刊名:硅酸盐学报
  • 英文刊名:Journal of the Chinese Ceramic Society
  • 机构:武汉科技大学资源与环境工程学院;武汉科技大学冶金矿产资源高效利用与造块湖北省重点实验室;中国水利水电科学研究院;
  • 出版日期:2019-06-25 15:45
  • 出版单位:硅酸盐学报
  • 年:2019
  • 期:10
  • 基金:国家自然科学基金重点项目(41230638);; 湖北省环保厅科研项目(2017HB08)
  • 语种:中文;
  • 页:114-121
  • 页数:8
  • CN:11-2310/TQ
  • ISSN:0454-5648
  • 分类号:X703
摘要
为改善纳米铁(NZVI)易氧化钝化和团聚的问题,以羧甲基纤维素钠改性的凹凸棒石黏土(CMC-ATP)为载体构建了CMC-ATP-NZVI复合材料,并对复合材料去除水中Zn(Ⅱ)的性能与机理进行了研究。结果表明:仅含33.3%(质量分数)纳米铁的CMC-ATP-NZVI与NZVI相比,对水中Zn(Ⅱ)有更快的反应速率和更高的去除效率,而成本却降低了约2/3。此外,相比未改性的ATP-NZVI复合材料,CMC-ATP-NZVI对Zn(Ⅱ)的吸附量提高了12.49 mg/g。CMC-ATP负载能够增强NZVI去除水中Zn(Ⅱ)性能的机制主要是:1) CMC-ATP的电动电位比ATP更低,因而对阳离子Zn~(2+)有更大的吸引力;2) CMC-ATP的分散作用使NZVI团聚体的尺寸变小,甚至成为单个纳米铁颗粒,因此复合材料比表面积增大,能提供更多吸附位点;3)CMC-ATP的负载提高了NZVI中F_e~0含量,因此NZVI能够充分发挥自身反应活性。CMC-ATP-NZVI去除Zn(Ⅱ)机制主要是F_e~0氧化和腐蚀产生的氧化物和羟基氧化铁表面羟基对Zn(Ⅱ)的配合作用以及Zn2+在反应后发生化学沉淀。
        Attapulgite modified by sodium carboxymethyl cellulose(CMC-ATP) was used as a carrier to build the CMC-ATP composite with nanoscale zero-valent iron(NZVI). The performance and mechanism for Zn(Ⅱ) removal from aqueous solution by CMC-ATP-NZVI were investigated. The results show that the efficiency and rate of Zn(Ⅱ) removal by CMC-ATP-NZVI(33.3% NZVI, in mass) are greater than those by NZVI alone. In addition, the adsorption capacity of CMC-ATP-NZVI for Zn(Ⅱ) is 12.49 mg/g, which is greater than that of ATP-NZVI. The enhanced performance for Zn(Ⅱ) removal by CMC-ATP as a carrier of NZVI is mainly since the zeta potential of CMC-ATP is negatively greater than that of ATP, leading to a more intense electrostatic attraction between CMC-ATP-NZVI and Zn~(2+), the CMC-ATP reduces the size of NZVI aggregates and some NZVI aggregates are dispersed to original zero-valent iron nanoparticles. Hence, the more adsorption sites are provided as the specific surface area of CMC-ATP-NZVI is increased. The amount of Fe0 in NZVI increases due to the supporting of NZVI by CMC-ATP. As a result, the reactivity of NZVI is enhanced. The mechanism of Zn(Ⅱ) removal by CMC-ATP-NZVI is mainly attributed to the complexation of Zn(Ⅱ) with hydroxide radical on the surface of ferric oxide or hydroxyl oxidize produced by oxidation or corrosion of Fe0, as well as the chemical precipitation of Zn2+ after reaction.
引文
[1]刘红,龚璇,范先媛,等.凹凸棒土负载纳米Fe/Ni的制备及其去除水中Zn(Ⅱ)性能研究[J].武汉科技大学学报, 2018, 41(5):370–375.LIU Hong, GONG Xuan, FAN Xianyuan, et al. J Wuhan Univ Sci Technol(in Chinese), 2018, 41(5):370–375.
    [2]方艳,闵小波,唐宁,等.含锌废水处理技术的研究进展[J].工业安全与环保, 2006, 32(7):5–8.FANG Yan, MIN Xiaobo, TANG Ning, et al. Ind Safety Environ Prot(in Chinese), 2006, 32(7):5–8.
    [3] DABBAGH R, SHARIFIPOOR S, KESHTKAR A, et al. Removal of zinc(II)from synthetic effluent using seaweeds:A review of modeling of fixed-bed columns[J]. Desalin Water Treat, 2016, 57(1):24509–24518.
    [4] BOPARAI H K, JOSEPH M, O’CARROLL D M. Kinetics and thermodynamics of cadmium ion removal by adsorption onto nano zerovalent iron particles[J]. J Hazard Mater, 2011, 186:458–465.
    [5] FU R B, YANG Y P, XU Z. The removal of chromium(VI)and lead(II)from groundwater using sepiolite-supported nanoscale zero-valent iron(S-N-ZVI)[J]. Chemosphere, 2015, 138:726–734.
    [6]汤晶,汤琳,冯浩朋,等.硫化纳米零价铁去除水体污染物的研究进展[J].化学学报, 2017, 75(6):575–582.TANG Jing, TANG Lin, FENG Haopeng, et al. Acta Chim Sin(in Chinese), 2017, 75(6):575–582.
    [7]黄潇月,王伟,凌岚,等.纳米零价铁与重金属的反应:“核–壳”结构在重金属去除中的作用[J].化学学报, 2017, 75(6):529–537.HUANG Xiaoyue, WANG Wei, LING Lan, et al. Acta Chim Sin(in Chinese), 2017, 75(6):529–537.
    [8] KARABELLI D, UZUM C, SHAHWAN T, et al. Batal removal of aqueous Cu2+ions using nanoparticles of zero-valent iron:A study of the capacity and mechanism of uptake[J]. Ind Eng Chem Res, 2008,47(14):4758–4762.
    [9] SHI L N, ZHANG X, CHEN Z L, et al. Removal of Chromium(VI)from wastewater using bentonite-supported nanoscale zero-valent iron[J]. Water Res, 2011, 45(2):886–892.
    [10] GREENLEE L F; TORREY J D, AMARO R L, et al. Kinetics of zero valent iron nanoparticle oxidation in oxygenated water[J]. Environ Sci Technol, 2012, 46(23):12913–12920.
    [11] HE F, ZHAO D Y, LIU J C, et al. Stabilization of Fe-Pd nanoparticles with sodium carboxymethyl cellulose for enhanced transport and dechlorination of trichloroethylene in soil and groundwater[J]. Ind Eng Chem Res, 2007, 46(1):29–34.
    [12] LIU Z G, ZHANG F, HOEKMAN S K, et al. Homogeneously dispersed zerovalent iron nanoparticles supported on hydrochar-derived porous carbon:simple, in situ synthesis and use for dechlorination of PCBs[J]. ACS Sustain Chem Eng, 2016, 4(6):3261–3267.
    [13]冯婧微,徐英侠,兰希平,等.纳米零价铁的改性及其应用研究进展[J].材料导报, 2014, 28(8):83–86.FENG Jingwei, XU Yingxia, LAN Xiping, et al. Mater Rev(in Chinese), 2014, 28(8):83–86.
    [14]谢晶晶,陈天虎,刘海波,等.苏皖地区凹凸棒石黏土的特征和应用发展方向[J].硅酸盐学报, 2018, 46(5):746–754.XIE Jingjing, CHEN Tianhu, LIU Haibo, et al. J Chin Ceram Soc,2018, 46(5):746–754.
    [15]王爱勤,王文波,郑易安,等.凹凸棒石棒晶束解离及其纳米功能复合材料[M].北京:科学出版社, 2014.
    [16]张威,韩占涛,吕晓立,等.测定纳米级及微米级铁粉中零价铁含量的装置[P]. CN Patent, 206132547U. 2017–04–26.ZHANG Wei, HAN Zhantao, LV Xiaoli, et al. A device for determination of zero-valent iron content in nanometer and micron iron powders(in Chinese). CN Patent, 206132547U. 2017–04–26.
    [17]李启厚,黄异龄,王红军,等.粒径≤2μm的超细粉体颗粒分散方式探讨[J].粉末冶金材料科学与工程, 2007, 12(5):284–288.LI Qihou, HUANG Yiling, WANG Hongjun, et al. Mater Sci Eng Powder Metall(in Chinese), 2007, 12(5):284–288.
    [18]蔡宏伟,王志花.分析化学[M].北京:化学工业出版社, 2008:257.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700