用户名: 密码: 验证码:
高沥青混凝土心墙受拉特性的简化力学分析方法
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Simplified mechanical analysis method for tensile characteristics of high asphalt concrete core
  • 作者:高俊 ; 党发宁 ; 杨超 ; 任劼
  • 英文作者:GAO Jun;DANG Fa-ning;YANG Chao;REN Jie;State Key Laboratory of Eco-hydraulics in Northwest Arid Region, Xi'an University of Technology;
  • 关键词:沥青混凝土心墙堆石坝 ; 直线型心墙 ; 曲线型心墙 ; 弹性地基梁
  • 英文关键词:rockfill dam with asphalt concrete core;;straight core;;curved core;;elastic foundation
  • 中文刊名:岩土工程学报
  • 英文刊名:Chinese Journal of Geotechnical Engineering
  • 机构:西安理工大学西北旱区生态水利国家重点实验室;
  • 出版日期:2019-07-15
  • 出版单位:岩土工程学报
  • 年:2019
  • 期:07
  • 基金:国家自然科学基金项目(51679199);; 水利部公益性行业科研专项基金项目(201501034-04);; 陕西省科技统筹创新工程重点实验室项目(2014SZS15-Z01)
  • 语种:中文;
  • 页:105-113
  • 页数:9
  • CN:32-1124/TU
  • ISSN:1000-4548
  • 分类号:TV641.4;TV31
摘要
目前,沥青混凝土心墙受力变形特性研究尚缺乏简化的分析方法。针对高沥青混凝土心墙存在严重的受拉现象,探讨了心墙产生拉应力的机理,结合拱结构的特殊传力机制,提出了减小心墙拉应力的构想,即将直线型心墙堆石坝设计成曲线型心墙堆石坝;基于Winkler弹性地基直梁和曲梁理论,构建了直线型心墙和曲线型心墙的简化力学分析模型;借助该模型分析了坝高和堆石料模量对直线型心墙的挠曲变形和拉应力(弯矩)的影响,考察了曲线型心墙减小其内部拉应力的效果。研究表明,建立的简化力学分析模型能够较好地反映心墙的受力变形特性;直线型心墙端部存在较大的拉应力,坝高越高和堆石料模量越小,心墙端部的拉应力越大,心墙产生拉破坏的风险越大;曲线型心墙借助挠曲变形使其轴线缩短和将横向荷载部分转化成轴向压荷载以减小弯矩以及增大轴向压力达到减小其端部拉应力的目的,曲线型心墙相较于直线型心墙拉应力减小约42.7%,显著改善了心墙的受拉特性,增强了心墙的安全性。
        At present, there is no simplified method to study the mechanical and deformation characteristics of asphalt concrete core. Aiming at the serious tensile phenomenon of high asphalt concrete core, the mechanism of the core producing tensile stress is analyzed. The concept of reducing the tensile stress of the core is proposed. The rockfill dam with straight core is designed to be the rockfill dam with curved core combining with the special transmission mechanism of the arch structure.Based on the theory of Winkler elastic foundation straight beam and curved beam, the simplified mechanical analysis model for the straight core and curved core is established. The influences of the dam height and rockfill modulus on the deflection and tensile stress(bending moment) of the straight core are investigated. The effect of the curved core to reduce tensile stress is also investigated. The results show that the simplified mechanical analysis model can reflect the force and deformation characteristics of the core. And there exists large tensile stress at the end of the straight core. The higher the dam height and the smaller the rockfill modulus, the greater the tensile stress at the end of the core and the greater the risk of the core-producing tensile failure. The curved core shortens the axis with the help of deflection and transforms the lateral load into axial compression load to reduce the bending moment and increases the axial force to reduce the tensile stress at its end. Compared with the straight core, the curved core can reduce the tensile stress about 42.5% at its end, which can greatly improve the mechanical characteristics and increase the security of the core.
引文
[1]WANG W B,HOEG K.the asphalt core embankment dam:a very competitive alternative[C]//Modern Rockfill Dams-2009.Beijing,2009.
    [2]ICOLD.Bituminous cores for fill dams[C]//International Commission on Large Dams,Bulletin 84.Paris,1992.
    [3]H?EG K.Asphaltic concrete cores for embankment dams[R].Oslo:Norwegian Geotechnical Institute of Technology,Norway,1993.
    [4]WANG W B.Research on the suitability of asphalt concrete as water barrier in dams and dikes[D].Oslo:University of Oslo,2008.
    [5]李守义,马成成,李炎隆,等.沥青混凝土心墙堆石坝的地震反应特性分析[J].水力发电学报,2013,32(6):198-202.(LI Shou-yi,MA Cheng-cheng,LI Yan-long,et al.Seismic response analysis of rockfill dam with asphaltic concrete core wall[J].Journal of Hydroelectric Engineering,2013,32(6):198-202.(in Chinese))
    [6]杨超,党发宁,薛海斌,等.河谷形状对沥青混凝土心墙坝变形特性的影响[J].水利水运工程学报,2016(4):54-62.(YANG Chao,DANG Fa-ning,XUE Hai-bin,et al.Influences of valley topography on deformation properties of asphalt concrete core wall dam[J].Hydro-Science and Engineering,2016(4):54-62.(in Chinese))
    [7]吴海林,彭云枫,杜晓帆,等.沥青混凝土心墙坝应力变形及水力劈裂研究[J].水力发电学报,2015,34(4):119-127.(WU Hai-lin,PENG Yun-feng,DU Xiao-fan,et al.Study on stress-deformation and hydraulic fracturing of rockfill dam with asphalt concrete core[J].Journal of Hydroelectric Engineering,2015,34(4):119-127.(in Chinese))
    [8]NG A K L,SMALL J C.A case study of hydraulic fracturing using finite element methods[J].Canadaian Geotechnical Journal,1999,36(5):861-875.
    [9]王为标,张应波,朱悦,等.沥青混凝土心墙石渣坝的有限元计算分析[J].水力发电学报,2010,29(4):173-178.(WANG Wei-biao,ZHANG Ying-bo,ZHU Yue.Finite element analysis of asphalt concrete core rock-debris dam[J].Journal of Hydroelectric Engineering,2010,29(4):173-178(in Chinese))
    [10]陈惠远,施群,唐仁杰.沥青混凝土心墙土石坝的应力-应变分析[J].岩土工程学报,1982,4(4):146-158.(CHEN Hui-yuan,SHI Qun,TANG Ren-jie.Stress-strain analysis of earth-rock dams with asphalt concrete core[J].Chinese Journal of Geotechnical Engineering,1982,4(4):146-158.(in Chinese))
    [11]荣冠,朱焕春.茅坪溪土石坝沥青混凝土心墙施工期变形分析[J].水利学报,2003(7):115-119.(RONG Guan,ZHUHuan-chun.Deformation of asphalt concrete core wall of Maopingxi earth-rock dam in the stage of construction[J].Journal of Hydraulic Engineering,2003(7):115-119.(in Chinese))
    [12]汪明元,周欣华,包承纲,等.三峡茅坪溪高沥青混凝土心墙堆石坝运行状态研究[J].岩石力学与工程学报,2007,26(7):1470-1477.(WANG Ming-yuan,ZHOU Xin-hua,BAO Cheng-gang,et al.Study on behaviors of Maopingxi high rockfill dam with asphalt concrete core of Three Gorges Project[J].Chinese Journal of Rock Mechanics and Engineering,2007,26(7):1470-1477.(in Chinese))
    [13]孔宪京,许诏君,邹德高,等.沥青混凝土心墙坝心墙与基座模型抗震试验研究[J].大连理工大学学报,2013,53(4):559-564.(KONG Xian-jing,XU Zhao-jun,ZOU De-gao,et al.Seismic test study of core wall and base model of asphalt concrete core wall dam[J].Journal of Dalian university of Technology,2013,53(4):559-564.(in Chinese))
    [14]郦能惠,杨泽艳.中国混凝土面板堆石坝的技术进步[J].岩土工程学报,2012,34(8):1361-1368.(LI Neng-hui,YANG Ze-yan.Technical advances in concrete face rockfill dams in China[J].Chinese Journal of Geotechnical Engineering,2012,34(8):1361-1368.(in Chinese))
    [15]李国英,王禄仕,米占宽.土质心墙堆石坝应力和变形研究[J].岩土工程学报,2012,23(8):1363-1369.(LIGuo-ying,WANG Lu-shi,MI Zhan-kuan.Research onstress-strain behavior of soil core rockfill dam[J].Chinese Journal of Geotechnical Engineering,2004,23(8):1363-1369.(in Chinese))
    [16]郭彦林,窦超.我国拱形钢结构设计理论研究现状与展[J].建筑结构学报,2012,33(7):1-17,26.(GUO Yan-lin,DOU Chao.Research status and expectation of design theory of steel arch structure in China[J].Journal of Building Structures,2012,33(7):1-17,26.(in Chinese))
    [17]文竞舟,张永兴,王成,等.钢拱架应力反分析隧道初期支护力学性能的研究[J].土木工程学报,2012,45(2):170-175.(WEN Jing-zhou,ZHANG Yong-xing,WANG Cheng,et al.Back analysis for the mechanical properties of initial tunnel support based on steel arch stresses[J].China Civil Engineering Journal,2012,45(2):170-175.(in Chinese))
    [18]蔡晓鸿,蔡勇平.水工压力隧洞结构应力计算[M].北京:中国水利水电出版社,2004.(CAI Xiao-hong,CAI Yong-ping.Structural stress calculation for hydraulic pressure tunnel[M].Beijing:China Water Power Press,2004.(in Chinese))
    [19]杨高中.对“弹性地基上圆拱的计算”的讨论[J].土木工程学报,1964,10(5):75-88.(YANG Gao-zhong.Discussion on“Computation of circular arch on elastic foundation”[J].China Civil Engineering Journal,1964,10(5):75-88.(in Chinese))
    [20]杨蓓.水轮机钢蜗壳及引水钢管垫层施工法受力解析[D].西安:西安理工大学,2012.(YANG Bei.The stress analysis of the cushion construction method of turbine spiral case and intake steel pipes[D].Xi'an:Xi'an University of Technology,2012.(in Chinese))
    [21]TERZAGHI K.Evaluation of coefficients of subgrade reaction[J].Géotechnique,1955,5(4):297-326.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700