用户名: 密码: 验证码:
QCLAS在JLMPGF6.5发动机CO体积分数测量中的应用
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Application of QCLAS in measurement of CO volume fraction from JLMPGF6.5 engine
  • 作者:于光保 ; 熊远辉 ; 罗中杰 ; 李发泉 ; 程学武 ; 段为民 ; 武魁军
  • 英文作者:YU Guangbao;XIONG Yuanhui;LUO Zhongjie;LI Faquan;CHENG Xuewu;DUAN Weimin;WU Kuijun;Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences;School of Mathematics and Physics, China University of Geosciences;
  • 关键词:光谱学 ; 遥感监测 ; 污染监测 ; 高光谱分辨
  • 英文关键词:spectroscopy;;remote sensing;;pollution monitoring;;hyperspectral resolution
  • 中文刊名:激光技术
  • 英文刊名:Laser Technology
  • 机构:中国科学院武汉物理与数学研究所;中国地质大学数理学院;
  • 出版日期:2019-03-08 11:53
  • 出版单位:激光技术
  • 年:2019
  • 期:04
  • 基金:国家重点研发计划重点专项资助项目(2017YFC0211900);; 国家自然科学基金青年基金资助项目(61705253)
  • 语种:中文;
  • 页:56-60
  • 页数:5
  • CN:51-1125/TN
  • ISSN:1001-3806
  • 分类号:X831
摘要
为了精确测量吸收光谱,并尽量减小温度与湍流波动对光谱测量结果的影响,采用谱线模拟仿真模拟和20kHz高频扫描的方法,选取中红外基频跃迁带内低温度敏感性谱线P(10),进行了理论分析和实验验证,取得了发动机CO吸收光谱及其体积分数随时间变化的数据,变化范围为(153±123)×10~(-6)。结果表明,P支谱线扫描范围内可降低48.28%目标气体温度变化对体积分数反演的影响。该方案能够为发动机尾气CO激光遥感测量提供一个高速、精准、实时的监测方案。
        In order to measure the absorption spectrum accurately and reduce the influence of temperature and turbulence fluctuation on spectral measurement, the method of spectrum simulation and 20 kHz high frequency scanning was adopted. The low temperature sensitivity line P(10) in mid-infrared fundamental frequency transition band was selected. The data of absorption spectra and volume fraction of engine CO with the change of time were obtained. The theoretical analysis and experimental verification were carried out. The results show that, the influence of target gas temperature change on volume fraction can be reduced by 48.28% within the scanning range of P branch line. The range of variation is(153±123)×10~(-6). The scheme can provide a high-speed, accurate and real-time monitoring scheme for CO laser remote sensing measurement of engine exhaust.
引文
[1] WANG Sh X,QIU X H,HAO J M,et al.Developing anthropogenic airpollutant emission inventory in China:progress and outlook [J].Environmental Protection,2017,21(45):21-26(in Chinese).
    [2] TOWNSEND C L,MAYNARD R L.Effects on health of prolonged exposure to low concentrations of carbon monoxide[J].Occupational and Environmental Medicine,2002,59(10):708-711.
    [3] LASHOF D A,AHUJA D R.Relative contributions of greenhouse gas emissions to global warming [J].Nature,1990,344(6266):529-531.
    [4] STEPHENS R D,CADLE S H.Remote sensing measurements of carbon monoxide emissions from on-road vehicles [J].Journal of the Air & Waste Management Association,1991,46(1):39-46.
    [5] MEDHURST L J.FTIR determination of pollutants in automobile exhaust:an environmental chemistry experiment comparing cold-start and warm-engine conditions [J].Journal of Chemical Education,2005,82(2):278-281.
    [6] CHEN Ch,ZHANG Y J,HE Y,et al.Weighted calibration method of NDIR sensor for vehicle exhaust testing[J].Journal of Atmospheric and Environmental Optics,2016,11(6):442-447(in Chinese).
    [7] CHEN Ch,ZHANG Y J,HE Y ,et al.Performance simulation analysis of NDIR sensor for vehicle exhaust[J].Infrared Technology,2017,39(6):567-573(in Chinese).
    [8] TIAN Zh H,DONG M R,LU J D,et al.Laser-induced breakdown spectroscopy in spatial distribution of methane laminar diffusion flame [J].Laser Technology,2018,42(1):60-61(in Chinese).
    [9] NATHAN G J,KALT P A M,ALWAHABI Z T,et al.Recent advances in the measurement of strongly radiating,turbulent reacting flows[J].Progress in Energy Combustion and Science,2012,38(1):41-61.
    [10] TAN Y,WANG J,TAO L G,et al.Precise parameters of molecular absorption lines from cavity ring-down spectroscopy[J].Chinese Journal of Lasers,2018,45(9):0911002(in Chinese).
    [11] HAN L,XIA H,DONG F Zh,et al.Progress and application of cavity enhanced absorption spectroscopy[J].Chinese Journal of Lasers,2018,45(9):0911002(in Chinese).
    [12] LIU J R,HU Zh Y.Applications of measurement techniques based on lasers in combustion flow field diagnostics [J].Chinese Optics,2018,11(4):531-549(in Chinese).
    [13] KAN R F,XIA H H,XU Zh Y,et al.Research and progress of flow diagnosis based on laser absorption spectroscopy [J].Chinese Journal of Lasers,2018,45(9):911005(in Chinese).
    [14] NIE W,KAN R F,YANG Ch G,et al.Research progress on the application of tunable diode laser absorption spectroscopy[J].Chinese Journal of Lasers,2018,45(9):911001(in Chinese).
    [15] ZHANG X,CAO Sh Y,GUO T X,et al.Research of methane volume fraction filed reconstruction based on tunable diode laser absorption spectroscopy detection technology[J].Laser Technology,2018,42(4):577-582(in Chinese).
    [16] CHAO X,JEFFRIES J B,HANSON R K,et al.Real-time,in situ,continuous monitoring of CO in a pulverized coal-fired power plant with a 2.3μm laser absorption sensor[J].Applied Physics,2013 ,B110(3):359-365.
    [17] ZHANG W,SHEN Y,YU X L,et al.Concentration measurement of carbon monoxide in combustion chamber of an ADN-based propellant thruster [J].Journal of Propulsion Technology,2015,36(5):650-655(in Chinese).
    [18] WU K J,LI F Q,CHENG X W,et al.Sensitive detection of CO2 concentration and temperature for hot gases using quantum-cascade laser absorption spectroscopy near 4.2μm [J].Applied Physics,2014,B117(2):659-666.
    [19] WEI Ch Y,PINEDA D I,PAXTON L,et al.Midinfrared laser absorption tomography for quantitative 2-D thermochemistry measurements in premixed jet flames [J].Applied Physics,2018,B124(6):123.
    [20] LIU X Ch,ZHANG G Y,HUANG Y ,et al.Twodimensional temperature and carbon dioxide concentration profles in atmospheric laminar diffusion flames measured by midinfrared direct absorption spectroscopy at 4.2μm[J].Applied Physics,2018,B124(4):61.
    [21] GORDON I E,ROTHMAN L S,HILL C,et al.The HITRAN2016 molecular spectroscopic database[J].Journal of Quantitative Spectroscopy and Radiative Transfer,2017,203:3-69.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700