用户名: 密码: 验证码:
预应变对含焊缝区X80管线钢应变响应特征及拉伸性能的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effect of prestrain on strain response characteristics and tensile properties of X80 line pipe steel with weld zones
  • 作者:武刚 ; 罗金恒 ; 许光达 ; 朱丽霞 ; 李丽锋 ; 陈翠翠
  • 英文作者:Wu Gang;Luo Jinheng;Xu Guangda;Zhu Lixia;Li Lifeng;Chen Cuicui;State Key Laboratory of Performance and Structural Safety for Petroleum Tubular Goods and Equipment Materials;CNPC Tubular Goods Research Institute;PetroChina West Pipeline Company;
  • 关键词:天然气管道 ; X80管线钢 ; 焊缝区域 ; 预应变 ; 应变硬化 ; 拉伸性能 ; 协同变形 ; 断裂行为 ; 韧窝
  • 英文关键词:Natural gas pipeline;;X80 line pipe steel;;Weld zone;;Prestrain;;Strain hardening;;Tensile property;;Collaborative deformation;;Fracture behavior;;Dimple
  • 中文刊名:天然气工业
  • 英文刊名:Natural Gas Industry
  • 机构:石油管材及装备材料服役行为与结构安全国家重点实验室;中国石油集团石油管工程技术研究院;中石油管道有限责任公司西部分公司;
  • 出版日期:2019-07-29 08:40
  • 出版单位:天然气工业
  • 年:2019
  • 期:07
  • 基金:“十三五”国家重点研发计划项目“原油天然气储罐及附属管道、辅助设施安全评定与风险评价预警研究”(编号:2017YFC0805804)
  • 语种:中文;
  • 页:126-132
  • 页数:7
  • CN:51-1179/TE
  • ISSN:1000-0976
  • 分类号:TE973;TG441.7
摘要
高通量天然气管道在使用过程中由于增压将引发局部变形,对管道材料的服役安全性会产生不利的影响。目前对于预变形引发硬化现象的研究主要集中在母材区域或焊缝区域,而对于含焊缝区域管线钢的研究则甚少。为此,以含焊缝区域的X80管线钢为研究对象,采用不同拉伸预变形量来模拟管道增压形成的单向拉应力,以此为基础研究焊缝和母材协同应变引起的加工硬化对管线钢拉伸性能的影响规律。研究结果表明:(1)在拉应力的作用下,焊缝区域和母材区域均发生应变响应;(2)焊缝区域较大晶粒尺寸可以有效增加晶界与内部位错的流动阻力,具有较高的应变硬化能力,使得再次变形时焊缝区屈服强度高于母材区,因此拉伸过程主要集中在母材区域;(3)预变形量越大,应变硬化现象越显著;(4)焊缝区的强应变响应能力导致断裂发生在母材区域并且断口形貌由微孔聚集型向准解理型断裂转变。结论认为,该研究成果可以为X80管线钢焊接工艺设计及高通量条件下的天然气管道安全评价提供理论基础和实验依据。
        Under the effect of pressurization, a high-flux natural gas pipeline can be locally deformed in the process of its application,and consequently the service safety of line pipe steel will be impacted severely. At present, the studies on the pre-deformation induced hardening phenomenon mainly focus on the base zones or weld zones, but the line pipe steel with weld zones is rarely researched. In this paper, X80 line pipe steel with weld zones was taken as the research object. Different tensile pre-deformation values were adopted to simulate the unidirectional tensile stress generated by pipeline pressurization. On this basis, the effect of work hardening induced by the collaborative strain of weld line and base material on the tensile properties of pipeline steel was studied. And the following research results were obtained. First, under the action of tensile stress, strain response occurs in weld zones and base zones. Second, larger crystalline grains in weld zones can effectively increase the flow resistance of crystalline boundary and internal dislocation, resulting in higher strain hardening capacity. And thus the yield strength of the weld zones is higher than that of the base zones when deformation occurs again,so the tensile process is mainly concentrated in the base zones. Third, the greater the pre-deformation is, the more significant the strain hardening phenomenon is. Fourth, due to the strong strain response in the weld zone, the fracture occurs in the base zone and the fracture morphology changes from the micro-pore aggregation to the quasi-cleavage fracture. In conclusion, the research results can provide a theoretical foundation and an experimental basis for the welding process design of X80 pipeline steel and the safety evaluation of high-flux natural gas pipelines.
引文
[1]Liu Xiaoben,Zhang Hong,Han Yinshan,Xia Mengying&Zheng Wei.A semi-empirical model for peak strain prediction of buried X80 steel pipelines under compression and bending at strike-slip fault crossings[J].Journal of Natural Gas Science and Engineering,2016,32(2):465-475.
    [2]Liu PF,Zheng JY,Zhang BJ&Shi P.Failure analysis of natural gas buried X65 steel pipeline under deflection load using finite element method[J].Materials&Design,2010,31(3):1384-1391.
    [3]Li Jintao,Su Lihong,Lu Cheng,Li Huijun&Luo Dongzhi.The evolution of microtexture of pipeline steel from strip to bare pipe to coated pipe[J].Procedia Engineering,2017,207(9):1844-1849.
    [4]Liu Xiaoben,Zhang Hong,Wu Kai,Xia Mengying,Chen Yanfei&Li Meng.Buckling failure mode analysis of buried X80 steel gas pipeline under reverse fault displacement[J].Engineering Failure Analysis,2017,77(7):50-64.
    [5]Chen Hongyuan,Niu Jing,Chi Qiang,Bi Yang,Wang Yalong,Yang Fen,et al.Strain capacity of girth weld joint cracked at"near-seam zone"[J].International Journal of Pressure Vessels and Piping,2016,139(6):77-85.
    [6]Ni Dingrui,Chen Daolong,Wang Dong,Xiao Bola&Ma Zongyi.Tensile properties and strain-hardening behaviour of friction stir welded SiCp/AA2009 composite joints[J].Materials Science&Engineering A,2014,608(7):1-10.
    [7]Eriksson CL,Larsson PL&Rowcliffe DJ.Strain-hardening and residual stress effects in plastic zones around indentations[J].Materials Science&Engineering A,2003,340(1):193-203.
    [8]中华人民共和国国家质量监督检验检疫总局.金属材料拉伸试验第一部分:室温试验方法:GB/T 228.1-2010[S].北京:中国标准出版社,2010.General Administration of Quality Supervision,Inspection and Quarantine of the PRC.Metallic materials-Tensile testing-Part1:Method of test at room temperature:GB/T 228.1-2010[S].Beijing:Standards Press of China,2010.
    [9]Tang CJ,Shang CJ,Liu SL,Guan HL,Misra RDK&Chen YB.Effect of volume fraction of bainite on strain hardening behavior and deformation mechanism of F/B multi-phase steel[J].Materials Science&Engineering A,2018,731(2):173-183.
    [10]Afrin N,Chen DL,Cao X&Jahazi M.Strain hardening behavior of a friction stir welded magnesium alloy[J].Scripta Materialia,2007,57(11):1004-1007.
    [11]Dundu M.Evolution of stress-strain models of stainless steel in structural engineering applications[J].Construction&Building Materials,2018,165(1):413-423.
    [12]Kingklang S&Uthaisangsuk V.Micromechanical modeling of anisotropic behavior of pipeline steel grade X65[J].Materials&Design,2017,127(6):243-260.
    [13]Bastola A,Wang J,Shitamoto H,Mirzaee-Sisan A,Hamada M&Hisamune N.Investigation on the strain capacity of girth welds of X80 seamless pipes with defects[J].Engineering Fracture Mechanics,2017,180(10):348-365.
    [14]Han Jian,Lu Cheng,Wu Bintao,Li Jintao,Li Huijun,Lu Yao,et al.Innovative analysis of Luders band behaviour in X80 pipeline steel[J].Materials Science&Engineering A,2017,683(4):123-128.
    [15]周翠,王斌,朱加祥,申坤.X70抗大变形管线钢焊接接头的组织与力学性能[J].机械工程材料,2014,38(10):32-36.Zhou Cui,Wang Bin,Zhu Jiaxiang&Shen Kun.Microstructure and mechanical properties of X70 pipeline steel with high deformability[J].Materials for Mechanical Engineering,2014,38(10):32-36.
    [16]Zhang Xiaoyong,Gao Huilin,Zhang Xueqin&Yang Yan.Effect of volume fraction of bainite on mechanical properties of X80pipeline steel with excellent deformability[J].Materials Science&Engineering A,2012,531(1):84-90.
    [17]Soliman M&Palkowski H.Influence of hot working parameters on microstructure evolution,tensile behavior and strain aging potential of bainitic pipeline steel[J].Materials&Design,2015,88(5):759-773.
    [18]Kingklang S&Uthaisangsuk V.Plastic deformation and fracture behavior of X65 pipeline steel:Experiments and modeling[J].Engineering Fracture Mechanics,2018,191(3):82-101.
    [19]孔德军,叶存冬,郭卫.X80管线钢焊接接头拉伸断裂行为与断口形貌分析[J].建筑材料学报,2015,18(1):139-144.Kong Dejun,Ye Cundong&Guo Wei.Tensile fracture behaviors and fracture morphologies of X80 pipeline steel welded joint[J].Journal of Building Materials,2015,18(1):139-144.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700