用户名: 密码: 验证码:
悬挂式多轮支撑旱地激光平地机设计与试验
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Design and Experiment on Multi-wheel Support Laser Land Leveler Hanging on Tractor
  • 作者:胡炼 ; 杜攀 ; 罗锡文 ; 周浩 ; 唐灵茂 ; 苏洪毅
  • 英文作者:HU Lian;DU Pan;LUO Xiwen;ZHOU Hao;TANG Lingmao;SU Hongyi;Key Laboratory of Key Technology on Agricultural Machine and Equipment,Ministry of Education,South China Agricultural University;College of Engineering,South China Agricultural University;
  • 关键词:激光平地 ; 悬挂式 ; 支撑轮 ; 平整度 ; 紧实度
  • 英文关键词:laser land leveling;;hanging;;support wheel;;flatness;;tightness
  • 中文刊名:农业机械学报
  • 英文刊名:Transactions of the Chinese Society for Agricultural Machinery
  • 机构:华南农业大学南方农业机械与装备关键技术教育部重点实验室;华南农业大学工程学院;
  • 出版日期:2019-07-02 15:22
  • 出版单位:农业机械学报
  • 年:2019
  • 期:08
  • 基金:国家重点研发计划项目(2017YFD0701105);; 国家自然科学基金项目(31601225)
  • 语种:中文;
  • 页:22-28
  • 页数:7
  • CN:11-1964/S
  • ISSN:1000-1298
  • 分类号:S222.51
摘要
针对牵引式旱地激光平地机转弯半径大、两轮支撑易出现压实轮辙、小田块精准平地适应性差等问题,设计了一种悬挂式多轮支撑旱地激光平地机,该机通过拖拉机三点悬挂机构浮动功能与多轮支撑相结合,实现激光控制平地作业。建立了平地铲浮动调节数学模型,确定了平地机结构参数与工作参数,分析了支撑轮对土壤的压实,设计了由两组刚性轮组成的支撑轮结构,减小了支撑轮对松软土壤的压实轮辙。田间试验结果表明,悬挂式多轮支撑旱地激光平地机作业性能稳定,田面最大高程差从平整前20. 8 cm降至平整后7. 3 cm,相对高程标准偏差Sd从平整前4. 48 cm下降到平整后1. 72 cm,平整后绝对差值小于3 cm的采样测量点累计百分比91. 94%,显著改善了田面平整情况,满足田块精准平地要求。平地前后网格点土壤紧实度分析结果表明,悬挂式多轮支撑旱地激光平地机的多支撑轮对试验田块0~17. 5 cm深度范围的土壤紧实度具有一定的压实影响,深度达17. 5 cm及以上时,土壤紧实度基本稳定,整田表层土壤压实均匀。松软土壤经过均匀压实后,减小了土壤后期的沉降,保证了田面平整度。通过作图法对比分析了悬挂式平地机与牵引式平地机在田角处不能平整的面积比例,平整100 m×100 m、36. 5 m×36. 5 m、25. 8 m×25. 8 m田块时,牵引式平地机不能平整面积占比分别为0. 78%、5. 8%和19. 4%,而悬挂式平地机不能平整面积占比小,分别为0. 09%、0. 68%和2. 25%,表明悬挂式平地机小田块平地作业更具优势。
        The laser land leveling of turning radius is large and the two-wheel support is easy to appear rim,which is not suitable for the accurate flat land of the small field. A multi-wheel support laser land leveling hanging on tractor was designed. By analyzing the floating function of the three-point suspension mechanism of the tractor and the multi-wheel support,the working principle of the laser-controlled flat shovel was realized. The mathematical model of the floating lifting shovel was established,and the structural parameters and working parameters of the grader were determined. Based on compaction analysis of the support wheel,the support wheel structure composing of two sets of rigid wheels was designed,which reduced the compaction and rim of the soft surface of the two-wheel support. The field test of the prototype showed that the operation performance of the machine was stable. The maximum elevation difference and standard deviation of the field were reduced from 20. 8 cm and 4. 48 cm to 7. 3 cm and 1. 72 cm,respectively. The cumulative percentage of the sampling points with the absolute difference between the sampling point and the mean was less than 3 cm was 91. 94%,which can significantly improve the smoothing of the field and meet the requirements of accurate flat land in the small field. The soil compaction degree of the grid points before and after the flat ground was compared and analyzed,which indicated that the compaction effect of the multi-wheel support on the test field appeared at 0 ~17. 5 cm. However,when the depth was more than 17. 5 cm,the soil compaction was basically stable,and the surface soil of the whole field was compacted evenly. Moreover,the soft soil was moderately compacted after leveling,which reduced the sedimentation in the later stage of the soil and ensured the smoothness of the field. The percentage of an area that can not be leveled in the field corners of the traction leveler and hanging leveler was analyzed through the mapping method. The result showed that in the 100 m × 100 m,36. 5 m × 36. 5 m and 25. 8 m × 25. 8 m,the proportion of area that can not be leveled with traction leveler was 0. 78%,5. 8% and 19. 4%,respectively,while the hanging leveler was only 0. 09%,0. 68% and 2. 25%,respectively,which showed that the hanging leveler was more suitable for small field flats.
引文
[1] JAT M L,CHANDNA P,GUPTA R,et al. Laser land leveling:a precursor technology for resource conservation[M]. Rice-Wheat Consortium Technical Bulletin Series,2006,7:1-48.
    [2] LARSON N,SEKHRI S,SIDHU R. Adoption of water-saving technology in agriculture:the case of laser levelers[J]. Water Resources&Economics,2016,14:44-64.
    [3] RICKMAN J F. Manual for laser land leveling[M]. Rice-Wheat Consortium for the Indo-Gangetic Plains,2002.
    [4] ASIF M,AHNMED M,GAFOOR A,et al. Wheat productivity,land and water use efficiency by traditional and laser land-leveling techniques[J]. Online Journal of Biological Sciences(Pakistan),2003,3(2):141-146.
    [5] MAQSOOD L,KHALIL T M. A review of direct and indirect implications of laser land leveling as agriculture resource conservation technology in Punjab province of Pakistan[C]∥Global Humanitarian Technology Conference. IEEE,2014:349-354.
    [6] ABDULLAEV I,HASSAN M U,JUMABOEV K. Water saving and economic impacts of land leveling:the case study of cotton production in Tajikistan[J]. Irrigation and Drainage Systems,2007,21(3-4):251-263.
    [7] TANG Lingmao,HU Lian,ZANG Ying,et al. Method and experiment for height measurement of scraper with water surface as benchmark in paddy field[J]. Computers and Electronics in Agriculture,2018,152:198-205.
    [8]任文涛,胡忠飞,崔红光,等.激光平地乳芽直播节水效果的研究[J].农业工程学报,2003,19(3):72-75.REN Wentao,HU Zhongfei,CUI Hongguang,et al. Effect of laser-controlled land leveling and baby rice seedling direct planting on saving water[J]. Transactions of the CSAE,2003,19(3):72-75.(in Chinese)
    [9] IRSEL G,ALTINBALIK M T. Adaptation of tilt adjustment and tracking force automation system on a laser-controlled land leveling machine[J]. Computers and Electronics in Agriculture,2018,150:374-386.
    [10] HUSEYIN Y,ISMET O. Prediction of the working time requirement and field capacity of laser controlled land leveling machines[J]. Tarm MakinalarBilimi Dergisi,2010,6(1):19-28.
    [11] NEMENYI M. The role of GIS and GPS in precision farming[J]. Computers and Electronics in Agriculture,2003,40(1-3):45-55.
    [12]刘刚,康熙,夏友祥,等.基于GNSS农田平整全局路径规划方法与试验[J/OL].农业机械学报,2018,49(5):27-33.LIU Gang,KANG Xi,XIA Youxiang,et al. Global path planning algorithm and experiment based on GNSS-controlled precise land leveling system[J/OL]. Transactions of the Chinese Society for Agricultural Machinery,2018,49(5):27-33. http:∥www. j-csam. org/jcsam/ch/reader/view_abstract. aspx? file_no=20180503&flag=1. DOI:10. 6041/j. issn. 1000-1298. 2018.05. 003.(in Chinese)
    [13]坎杂,田学艳,江英兰,等.农用激光平地机的应用现状及其发展前景[J].农业机械学报,2001,32(5):126-127.KAN Za,TIAN Xueyan,JIANG Yinglan,et al. Agricultural application status and development prospect of laser grader[J].Transactions of the Chinese Society for Agricultural Machinery,2001,32(5):126-127.(in Chinese)
    [14]顾丽雅.拖式激光控制平地机研制[D].天津:天津大学,2005.GU Liya. The research of scraper by laser control[D]. Tianjin:Tianjin University,2005.(in Chinese)
    [15]韩静鸽,刘琦. 1JPD-200型旱地激光平地机关键部件设计与分析[J].农业科技与装备,2015(6):29-31.HAN Jingge,LIU Qi. Design and analysis on key components of type 1JPD-200 dry land laser leveling machine[J]. Agricultural Science&Technology&Equipment,2015(6):29-31.(in Chinese)
    [16]姚东伟,刘存祥. JPD-360型旱地激光平地机的研究设计[J].农机化研究,2017,39(6):85-95.YAO Dongwei,LIU Cunxiang. JPD-360 type dry laser grader research design[J]. Journal of Agricultural Mechanization Research,2017,39(6):85-95.(in Chinese)
    [17]林建涵,刘刚,汪懋华,等.用于激光平地机的激光控制系统的研究[C]∥中国农业工程学会学术年会,2005.
    [18]杨伟伟.水田激光平地机控制系统优化设计[D].广州:华南农业大学,2016.YANG Weiwei. Optimal design for the control system for paddy field laser leveler[D]. Guangzhou:South China Agricultual University,2016.(in Chinese)
    [19] HU Lian,YANG Weiwei,HE Jing,et al. Roll angle estimation using low cost MEMS sensors for paddy field machine[J].Computers and Electronics in Agriculture,2019,158:183-188.
    [20]刘刚,林建涵,司永胜,等.激光控制平地系统设计与试验分析[J].农业机械学报,2006,37(1):71-74.LIU Gang,LIN Jianhan,SI Yongsheng,et al. Development and experiment on laser controlled leveling system[J]. Transactions of the Chinese Society for Agricultural Machinery,2006,37(1):71-74.(in Chinese)
    [21]陆为农.水稻生产机械化发展现状及展望[J].农机科技推广,2006(2):13-16.LU Weinong. Progress and development of mechanical rice production[J]. Agriculture Machinery Technology Extension,2006(2):13-16.(in Chinese)
    [22]王宪良.农机作业土壤压实评价及组合铲松土技术研究[D].北京:中国农业大学,2018.WANG Xianliang. Study on the evaluation of soil compaction by agricultural tire and combination shovel loose soil technology[D]. Beijing:China Agricultural University,2018.(in Chinese)
    [23]中国农业机械化科学研究院.农业机械设计手册[M].北京:中国农业科学技术出版社,2007.
    [24]王瑶.基于离散元方法的平地机铲刀工作性能研究[D].长春:吉林大学,2015.WANG Yao. Research on the working performance of grader blade based on the discrete element method[D]. Changchun:Jilin University,2015.(in Chinese)
    [25]李龙城.推土铲铲壁设计参数的研究[J].农业机械学报,1979,10(4):85-96.LI Longcheng. A research of parameters of the design of blade walls of bulldozers[J]. Transactions of the Chinese Society for Agricultural Machinery,1979,10(4):85-96.(in Chinese)
    [26]崔步安,侯志强,倪翔宇,等.平地机铲刀弧形结构研究[J].筑路机械与施工机械化,2018,35(11):94-96.CUI Buan,HOU Zhiqiang,NI Xiangyu,et al. Research on arc structure of grade blade[J]. Road Machinery&Construction Mechanization,2018,35(11):94-96.(in Chinese)
    [27]张兴义,隋跃宇.农田土壤机械压实研究进展[J].农业机械学报,2005,36(6):122-125.ZHANG Xinyi,SUI Yueyu. International research trends of soil compaction induced by moving machine during field operations[J]. Transactions of the Chinese Society for Agricultural Machinery,2005,36(6):122-125.(in Chinese)
    [28] HAMZA M A,ANDERSON W K. Soil compaction in cropping systems[J]. Soil and Tillage Research,2005,82(2):121-145.
    [29]林观土,罗锡文,李庆,等.全站仪在农田土地平整中的应用及精度分析[J].广东农业科学,2007(4):46-48.LIN Guantu,LUO Xiwen,LI Qing,et al. Application of total station on the leveling of farmland and precision analysis[J].Guangdong Agricultural Sciences,2007(4):46-48.(in Chinese)
    [30]胡炼,罗锡文,林潮兴,等. 1PJ-4. 0型水田激光平地机设计与试验[J/OL].农业机械学报,2014,45(4):146-151.HU Lian,LUO Xiwen,LIN Chaoxin,et al. Development of 1PJ-4. 0 laser leveler installed on a wheeled tractor for paddy field[J/OL]. Transactions of the Chinese Society for Agricultural Machinery,2014,45(4):146-151. http:∥www. j-csam. org/jcsam/ch/reader/view_abstract. aspx? flag=1&file_no=20140423&journal_id=jcsam. DOI:10. 6041/j. issn. 1000-1298.2014. 04. 023.(in Chinese)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700