用户名: 密码: 验证码:
改进式开顶气室模拟CO_2浓度控制系统性能分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Evaluation of a modified open-top chamber simulation system on the study of elevated CO_2 concentration effects
  • 作者:马亚平 ; 王乃功 ; 贾昊 ; 曹兵
  • 英文作者:MA Yaping;WAHG Naigong;JIA Hao;CAO Bing;School of Agriculture, Ningxia University;Hebei Qishi Electronics Technology Co.Ltd.;
  • 关键词:开顶气室 ; 二氧化碳浓度 ; 空气温度 ; 空气相对湿度
  • 英文关键词:open-top chamber;;CO2 concentration;;air temperature;;air relative humidity
  • 中文刊名:地球环境学报
  • 英文刊名:Journal of Earth Environment
  • 机构:宁夏大学农学院;河北其实电子科技有限公司;
  • 出版日期:2019-06-15
  • 出版单位:地球环境学报
  • 年:2019
  • 期:03
  • 基金:国家自然科学基金项目(31660199,31160172)~~
  • 语种:中文;
  • 页:99-107
  • 页数:9
  • CN:61-1482/X
  • ISSN:1674-9901
  • 分类号:X51
摘要
为提高开顶气室(open-top chamber,OTC)模拟气候变化研究植物生理响应的控制效果,基于前期OTC控制系统基础,对气室结构、控制系统及监测系统改进升级。对改进后的OTC控制系统采集了试验期间5月—10月OTC气室内CO_2浓度、温度及空气相对湿度实时数据分析模拟效果,结果表明:改进后的OTC控制系统能够控制CO_2浓度达到试验预设浓度梯度,在试验期OTC气室内监测的CO_2浓度平均值对照组(CK)为369.33μmol·mol~(-1),处理1组(TR1)为558.35μmol·mol~(-1),处理2组(TR2)为772.71μmol·mol~(-1);CO_2浓度波动范围TR1组为551.82—572.40μmol·mol~(-1),变幅为20.58μmol·mol~(-1);TR2组为756.71—779.79μmol·mol~(-1),变幅为23.08μmol·mol~(-1),满足试验预设模拟要求;气室内不同处理间温度、空气相对湿度差异均不显著(p>0.05)。改进后的OTC控制系统模拟效果好,可用于研究植物响应气候变化的模拟试验。
        Background,aim,and scope Enhancement of carbon dioxide(CO_2)in the atmosphere has received great attention due to its potential repercussion on global warming and direct effects on the vegetation,especially with a potential increase in atmospheric CO_2 level from 400μmol·mol~(-1) to 1000μmol·mol~(-1) by the end of21st century according with currents environmental studies.Therefore,development of new technologies on controlled environment conditions are needed to investigate plant response to CO_2 enhancements and its possible repercussion on world food security.Among the controlled environment facilities such as the free air CO_2 enrichment(FACE),soil-plant-atmosphere research chambers(SPAR),and CO_2-temperature gradient chambers(CTGC),the open-top chambers(OTC)are commonly used to control elevated CO_2 concentration for plant science research.In the present study,we aimed to evaluate a modified OTC,designed and constructed based on previous OTC experiences,which provides a precise control of CO_2 under different concentrations,with excellent control of air temperature and humidity.Materials and methods Three parts of OTC chamber structure,control system and monitoring system are improved and upgraded.(1)The modified OTC has a regular octagonal prism structure made of plastic steel 4 mm thick high transmittance glass material,an improvement over the previous system.The structure dimensions are 1.08 m length(diagonal),of 2.78 m diameter,and the inner and outer height(top)of 2.55 m and 2.10 m,respectively.(2)The monitoring system consisted of CO_2 analyzers,temperature and humidity sensors,and a data acquisition system.(3)The control system is also composed by other features like programmable logic controller,GPRS communication module,a touch screen,a micro-relay,CO_2 pressure reducing valves,solenoid valves,perforated windpipes,and CO_2 cylinders.The OTC control system automatically collects and uploads data every six minutes using a system control coupled to the PI regulation mode(Proportional integral controller).A linear controller generates deviation monitoring according to a given and an actual output value.The system is also equipped with a GSM communication module connected with the PLC through the Protocol PPI(Point to point interface)to upload all the data to a web server.The OTC control,monitoring system and the data can be accessed in real time through web browser or mobile App,reducing operation costs and allowing environmental variables monitoring.(4)To test the functionality of the modified OTC,Goji berry(Lycium barbarum L.)plants were grown from May to October on 2017 inside the chambers.Real-time data of CO_2 concentration,temperature,and air relative humidity of the chambers were collected.Results As a result,the average CO_2 levels obtained in the chamber during the study period was 369.33μmol·mol~(-1) for ambient conditions,while elevated group 1 and group 2 showed concentrations of558.35μmol·mol~(-1) and 772.71μmol·mol~(-1) respectively.The fluctuation for elevated group 1 ranged from551.82μmol·mol~(-1) to 572.40μmol·mol~(-1) with a variation amplitude of 20.58μmol·mol~(-1).In the elevated group2,the range of CO_2 concentration was from 756.71μmol·mol~(-1) to 779.79μmol·mol~(-1) with variation amplitude of 23.08μmol·mol~(-1).In addition,no significant differences were found in temperature and air relative humidity among the chambers treatments(p>0.05).Discussion The improved OTC simulation control system can well control the CO_2 concentration to meet the preset concentration requirements.In actual control,it needs to further debug and improve to achieve stable operation.Hysteresis usually occurs in the actual control,mainly because in the actual control,CO_2 sensor from the monitoring of indoor air CO_2 concentration to the control system takes a certain time,the control system automatically adjusts the solenoid valve opening and closing frequency through real-time monitoring data,keeping the CO_2 concentration in the air chamber always close to the preset value,the CO_2 concentration in the air chamber will be higher than the preset value due to the time difference.In addition,the CO_2 concentration is also affected by the outside wind speed and the photosynthetic respiration of the plant,and the CO_2 concentration in the air chamber changes greatly.The main purpose of using OTC simulation system in this study is to long-term study the effects of different CO_2 concentration treatments on the physiological process of plants.The influencing factors are the same except for the CO_2 concentration.This system monitors the temperature and humidity of OTC chambers in real time through different treatment.The results show that the difference in temperature and humidity in different treatment chambers is small,the trend of change is consistent,and the test control effect is good,and the expected purpose of the test is achieved.In addition,if it is necessary to increase temperature simulation in the study,a temperature increase control system may be correspondingly increased to achieve different CO_2 concentration and temperature interactive processing simulation test.Conclusions These results demonstrated precise control of CO_2 concentration,temperature,and humidity inside the modified OTC chambers,showing an excellent development of CO_2 effect improvement on Goji berry,and it can be used to test climate change response in other plant species.Recommendations and perspectives The improved OTC control system realizes automatic unsupervised operation 24 hours a day.All data systems are automatically uploaded to the web server.The system operation status can be monitored in real time through a web browser/mobile phone App,and the system can be controlled and the solenoid valve can be opened and closed.Download data,no geographical restrictions,no manual on-site supervision and save operating costs,improve work efficiency.The system can be used to study the simulation test of plants responding to climate change,and it can also provide reference for other studies related to the simulation of climate change.
引文
郭艳亮,王晓琳,张晓媛,等.2017.田间条件下模拟CO2浓度升高开顶式气室的改进及其效果[J].农业环境科学学报,36(6):1034-1043.[Guo Y L,Wang X L,Zhang X Y,et al.2017.Improvement and performance of open-top chambers used for simulating elevated CO2 under field conditions[J].Journal of Agro-Environment Science,36(6):1034-1043.]
    李豫婷,冯永祥,韩雪,等.2017.半开放式CO2和温度递增系统(CTGC)的改进:CO2浓度控制效果[J].中国农业气象,38(2):104-112.[Li Y T,Feng Y X,Han X,et al.2017.Improved semi-open CO2 concentration and temperature gradient Chambers(CTGC):controlling to CO2concentration[J].Chinese Journal of Agrometeorology,38(2):104-112.]
    万运帆,游松财,李玉娥,等.2014.开顶式气室原位模拟温度和CO2浓度升高在早稻上的应用效果[J].农业工程学报,30(5):123-130.[Wan Y F,You S C,Li Y,et al.2014.Applied effect of improved open-top chamber on simulation in situ of elevating air temperature and CO2 concentration in early rice field[J].Transactions of the Chinese Society of Agricultural Engineering,30(5):123-130.]
    杨术明,曹兵,杨树川.2010.开顶式气室CO2浓度自动控制系统的设计与实现[J].微计算机信息,26(28):49-50,22.[Yang S M,Cao B,Yang S C.2010.Design and realization of a wireless-CO2 concentration-control system for OTC[J].Microcomputer Information,26(28):49-50,22.]
    张金恩,肖洪,郑有飞,等.2015.开顶式气室内外冬小麦光合特性差异比较[J].生态学报,35(21):6993-7002.[Zhang J E,Xiao H,Zheng Y F,et al.2015.Comparative of the photosynthetic characteristics of winter wheat grown inside and outside open-top chambers[J].Acta Ecologica Sinica,35(21):6993-7002.]
    张仟雨,宗毓铮,董琦,等.2016.大气CO2浓度升高对大豆光合生理的影响[J].山西农业科学,44(11):1675-1679.[Zhang Q Y,Zong Y Z,Dong Q,et al.2016.Effects of elevated atmospheric CO2 concentration on soybean photosynthesis[J].Journal of Shanxi Agricultural Sciences,44(11):1675-1679.]
    Bunce J A.2016.Responses of soybeans and wheat to elevated CO2 in free-air and open top chamber systems[J].Field Crops Research,186:78-85.
    Dwivedi S K,Kumar S,Kumar R,et al.2017.Interactive effect of elevated CO2 and temperature on the incidence of Brown spot and sheath blight of rice(Oryza sativa L.)[J].International Journal of Current Microbiology and Applied Sciences,6(4):195-202.
    Heagle A S,Body D E,Heck W W.1973.An open-top field chamber to assess the impact of air pollution on plants[J].Journal of Environment Quality,2(3):365-368.
    IPCC.2014.Summary for policymakers[R]//Edenhofer O,PichsMadruga R,Sokona Y,et al.Climate change 2014.Mitigation of climate change.Contribution of working groupⅢto the fifth assessment report of the intergovernmental panel on climate change.Cambridge UK,New York(NY):Cambridge University Press:44-47.
    Kadiyala M D M,Nedumaran S,Singh P,et al.2015.An integrated crop model and GIS decision support system for assisting agronomic decision making under climate change[J].Science of the Total Environment,521/522:123-134.
    Lohraseb I,Collins N C,Parent B.2017.Diverging temperature responses of CO2 assimilation and plant development explain the overall effect of temperature on biomass accumulation in wheat leaves and grains[J].Ao B Plants,9:plw092.DOI:10.1093/aobpla/plw092.
    Norby R J,de Kauwe M G,Domingues T F,et al.2016.Modeldata synthesis for the next generation of forest free-air CO2enrichment(FACE)experiments[J].New Phytologist,209(1):17-28.
    Norby R J,Zak D R.2011.Ecological lessons from free-air CO2enrichment(FACE)experiments[J].Annual Review of Ecology,Evolution,and Systematics,42:181-203.
    Okada M,Lieffering M,Nakamura H,et al.2001.Free-air CO2enrichment(FACE)using pure CO2 injection:system description[J].New Phytologist,150(2):251-260.
    Pandey V,Sharma M,Deeba F,et al.2017.Impact of elevated CO2on wheat growth and yield under free air CO2 enrichment[J].American Journal of Climate Change,6(4):573-596.
    Piikki K,de Temmerman L,H?gy P,et al.2008.The opentop chamber impact on vapour pressure deficit and its consequences for stomatal ozone uptake[J].Atmospheric Environment,42(26):6513-6522.
    Pleijel H,H?gy P.2015.CO2 dose-response functions for wheat grain,protein and mineral yield based on FACE and opentop chamber experiments[J].Environmental Pollution,198:70-77.
    Reddy K R,Brand D,Wijewardana C,et al.2017.Temperature effects on cotton seedling emergence,growth,and development[J].Agronomy Journal,109(4):1379-1387.
    Reddy K R,Hodges H F,Read J J,et al.2001.Soil-PlantAtmosphere-Research(SPAR)facility:a tool for plant research and modeling[J].Biotronics,30:27-50.
    Singh P,Boote K J,Kadiyala M D M,et al.2017.An assessment of yield gains under climate change due to genetic modification of pearl millet[J].Science of the Total Environment,601/602:1226-1237.
    Supit I,van Diepen C A,de Wit A J W,et al.2012.Assessing climate change effects on European crop yields using the Crop Growth Monitoring System and a weather generator[J].Agricultural and Forest Meteorology,164:96-111.
    Vasseur F,Pantin F,Vile D.2011.Changes in light intensity reveal a major role for carbon balance in Arabidopsis responses to high temperature[J].Plant,Cell&Environment,34(9):1563-1576.
    Wang J Y,Wang C,Chen N N,et al.2015.Response of rice production to elevated[CO2]and its interaction with rising temperature or nitrogen supply:a meta-analysis[J].Climatic Change,130(4):529-543.
    Xu Z Z,Shimizu H,Ito S,et al.2014.Effects of elevated CO2,warming and precipitation change on plant growth,photosynthesis and peroxidation in dominant species from North China grassland[J].Planta,239(2):421-435.
    Yun S I,Kang B M,Lim S S,et al.2012.Further understanding CH4 emissions from a flooded rice field exposed to experimental warming with elevated[CO2][J].Agricultural and Forest Meteorology,154/155:75-83.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700