账户: 密码:
东喜马拉雅构造结墨脱剪切带的研究
详细信息    本馆镜像全文|  推荐本文 | 收藏本文 |   获取CNKI官网全文
摘要
本文通过对东喜马拉雅构造结墨脱剪切带进行了详细的构造变形、变质岩石学、岩石组构学及同位素年代学研究,确定了该断裂带的几何学和运动学性质、活动时限,查明区内高级变质岩的P-T轨迹,同时对构造结东、西两侧剪切带进行了对比,初步认识了新生代以来东喜马拉雅构造的构造演化过程。本研究主要获得如下几点认识:
     1、通过野外详细的构造解析,初步确定墨脱剪切带与东久-米林剪切带(西侧)具有类似的特征,不同部位的变形性质具有逐渐演化的特征。从南至北分为三段:阿尼桥-希让段、旁辛-达木段及甘登-加拉萨段。几何学和运动学研究结果显示其分别表现为右行兼斜向正滑的运动学特征、右行走滑运动学特征及右行兼斜向逆冲的运动学特征;
     2、通过对同构造岩脉进行锆石U-Pb定年,及二云母片岩、石英云母片岩等岩石中白云母的40Ar-39Ar定年分析,共同限定了墨脱剪切带的活动时限。年代学结果表明:自印度-亚洲板块碰撞以来,墨脱剪切带经过多期多阶段的演化过程,起始活动时限不晚于~28.6Ma;
     3、在墨脱剪切带附近出露大量高级变质岩(如含蓝晶石-石榴石云母片岩、角闪岩类等),温度和压力计算结果表明研究区内变质岩变质作用经历了顺时针的P-T轨迹和近等温降压(ITD)的退变质演化过程,并且其峰期变质阶段属于高压变质相系;
     4、通过对东构造结东、西边界(墨脱剪切带和东久-米林剪切带)进行几何学和运动学及活动时限的对比,我们认为:(1)东、西两侧断裂带不同地段具有相对应的几何学和运动学特征,如:南段均具有右/左行兼下滑的运动学特征;中段则均以走滑性质为主,其中东侧为右行走滑运动,西侧为左行走滑运动;北段均具有右/左行兼逆冲的运动学特征;即南迦巴瓦变质体受制于这两条断裂带相对向北推移,并深深楔入拉萨地体之下;(2)两侧剪切带的活动时限具有一致性,并且与南迦巴瓦变质体的隆升过程具有同步性;
     5、综合已有研究结果,我们提出自印度-亚洲板块碰撞以来东喜马拉雅构造结的构造演化过程,主要经历了俯冲-碰撞阶段(从65Ma至40Ma左右)、折返阶段(从37Ma至23Ma左右)及快速隆升阶段(从22Ma至今)三个阶段。
In this thesis, I present tectonic deformation, metamorphic petrology, rock fabric and isotope chronology for the Medog shear zone, with the aim of constraining the geometry, kinematics and initiation time of the shear zone, as well as the P-T paths of high-grade metamorphic rock in the study area. Then I will compare the Medog shear zone with the Milin-Dongjiu shear zone, which is the western boundary of the eastern Himalyan Syntaxis. Finally the tectonic evolution of the eastern Himalayan Syntaxis will be discussed. The main results are as follows:
     1. Through the detailed field observations, we find out that the Medog shear zone is complex and shows variations from place to place, depending mainly on its orientation. From south to north, the Medog shear zone can be divided into three segments:Aniqiao-Xirang, Pangxin-Damu and Gandeng-Jialasa. Our research demonstrates that they are a normal shear zone with oblique stretching lineation, a dextral ductile strike-slip shear zone and a right lateral thrust shear zone, respectively.
     2. Based on the new LA-ICP-MS zircon U-Pb dating for syn-kinematic leucocratic intrusions and40Ar/3Ar ages of muscovite mostly from two micas schists and quartz-mica schists,the initiation time of the Medog shear zone can be well constrained. The geochronology analysis reveals that the Medog shear zone has undergone multistage evolution since India-Asia collision, and its right lateral shearing initiatied no later than~28.6Ma.
     3. Large amount of high grade metamorphic rocks, e.g. mica schists bearing Ky-Grt and amphibolites, are widely exposed along the Medog shear zone. Thermobaromertric computation shows that these rocks have undergone metamorphism characterized by clockwise P-T paths and nearly isothermal decompression (ITD) with the peak high-presure conditions.
     4. According to comparisons (geometrics, kinematics and the initiation time) of the two boundaries of the syntaxis, i.e. the Medog shear zone and Dongjiu-Milin shear zone, it suggests that the two shear zones have similar geometry and kinematics: normal slip dominates in the south section, strike slip for the central parts where sinistral in western and dextral in eastern segment, respevtively, and finally thrust slip controls the north section. It indicates that the Namche Barwa metamorphic terrane is controlled by the two shear zones, which moved northward and subducted deeply beneath the Lhasa terrane. On the other hand, the two shear zones started at the same time, and are coeval as the uplifting of Namche Barwa metamorphic terrane.
     5. Combining with the published data, a three-stage model has been established to explain the formation and evolution of the eastern Himalayan Syntaxis:the subduction-collision stage (65-40Ma), exhumation stage (37-23Ma) and rapid uplift stage (22Ma-present).
引文
1. 常承法,潘裕生,郑锡谰,张新明.青藏高原地质构造[J].北京:科学出版社,1982,1-91.
    2. 陈文,张彦,张岳桥,金贵善,王清利.青藏高原东南缘晚新生代幕式抬升作用的Ar-Ar热年代学证据[J].岩石学报,2006,22(4):867-872.
    3. 崔军文,朱红,武长得等.亚东-格尔木GGT,青藏高原岩石圈变形及其动力学[M].北京:地质出版社,1992:164.
    4. 崔军文.喜马拉雅碰撞带的构造演化[J].地质学报,1997,71(2):105-112.
    5. 丁林,钟大赉.西藏南迦巴瓦峰地区高压麻粒岩相变质作用特征及其构造地质意义[J].中国科学(D辑),1999,29(5):385-397.
    6. 丁林,钟大赉,潘裕生,黄萱,王庆隆.东喜马拉雅构造结上新世以来快速抬升的裂变径迹证据[J].科学通报,1995,40(16):1497-1500.
    7. 丁林,钟大赉.印度与欧亚板块碰撞以来东喜马拉雅构造结的演化[J].地质科学,2013,48(2):317-333.
    8. 董汉文,许志琴,李源,刘钊,李忠海.南迦巴瓦构造结果脱地区高Sr/Y花岗岩的成因:地球化学、锆石U-Pb年代学及Hf同位素约束[J].岩石学报,2013,29(6):2013-2023.
    9. 耿全如,彭智敏,张璋.藏东雅鲁藏布江大拐弯蛇绿岩变基性岩类岩石地球化学再研究[J].地质通报,2010,29(12):1781-1794.
    10.耿全如,彭智敏,张璋喜.马拉雅东构造结地区雅鲁藏布江蛇绿岩地质年代学研究[J].地质学报,2011,85(7):1116-1127.
    11.龚俊峰,季建清,陈建军,桑海青,李宝龙,刘一多,韩宝福.东喜马拉雅构造结岩体冷却的40Ar/39Ar年代学研究[J].岩石学报,2008,24(10):2255-2272.
    12.龚俊峰.喜马拉雅中东段40Ar/39Ar年代学及热史演化研究[D].北京:北京大学博士学位论文,2009.
    13.郭亮,张宏飞,徐旺春.东喜马拉雅构造结多雄拉混合岩和花岗片麻岩锆石U-Pb年龄及其地质意义[J].岩石学报,2008,24(3):421429.
    14.季建清,钟大赉,宋彪,朱美妃,温大任.喜马拉雅中段高压麻粒岩变质作用,地球化 学与年代学[J].岩石学报,2004,20(5):1283-1300.
    15.雷永良.东喜马拉雅构造结地区晚中新世以来的构造-地貌年代学研究[D].北京:中国科学院博士学位论文,2006.
    16.李德威,廖群安,袁宴明,易顺华.喜马拉雅造山带中段核部杂岩中基性麻粒岩的发现及构造意义[J].地球科学-中国地质大学学报,2002,27:80(96).
    17.李德威,廖群安,袁晏明,万渝生,刘德民,张雄华,谢德凡.喜马拉雅造山带中段日玛那麻粒岩锆石U-Pb年代学[J].科学通报,2004,48(20):2176-2179.
    18.李刚,刘正宏,刘俊来,李永飞,徐仲元,董晓杰.医巫闾山伸展型韧性剪切带的形成过程及年代学证据[J].中国科学:地球科学,2012,42(6):879-892.
    19.刘树文,张进江,郑亚东.小秦岭变质核杂岩同变形期的P-T路径[J].科学通报,1997,42:312-318.
    20.刘焰,钟大赉.东喜马拉雅地区高压麻粒岩岩石学研究及构造意义[J].地球科学,1998a,33(3):267-281:
    21.刘焰,钟大赉.东喜马拉雅构造结地质构造框架[J].自然科学进展,1998b,8(4):506-509.
    22.刘玉海.南迦巴瓦峰地区地质构造概况[J].山地研究,1985,3(4):325-326.
    23.莫宣学,赵志丹,邓晋福,董国臣,周肃,郭铁鹰,张双全,王亮亮.印度-亚洲大陆主碰撞过程的火山作用响应[J].地学前缘,2003,10(3):135-148.
    24.潘桂棠,陈智梁,李兴振等.东特提斯地质构造形成演化[M].北京:地质出版社,1997.
    25.戚学祥,李天福,李化启,蔡志慧,于春林.东喜马拉雅构造结南迦巴瓦群高压麻粒岩中含石榴石花岗岩脉锆石SHRIMPU-Pb定年及其与折返作用[J].岩石学报,2010.26(3):975-984.
    26.孙鸿烈,郑度.青藏高原形成演化与发展[M].广州:广东科学技术出版社,1998:383.
    27.孙立新,万晓樵,吴新国,贾建称,高莲凤.雅鲁藏布结合带中段混杂带内玄武岩的地球化学特征[J].地质通报,2005,24(1):65-71.
    28.孙志明,耿全如,楼雄英,郑来林,李生,廖光宇.东喜马拉雅构造结南迦巴瓦岩群的解体[J].沉积与特提斯地质,2004a,24(2):8-15.
    29.孙志明,郑来林,耿全如,李生,廖光宇,石文礼,张东.东喜马拉雅构造结高压麻粒岩特征,形成机制及折返过程[J].沉积与特提斯地质,2004b,24(3):22-29.
    30.万晓樵,丁林.西藏吉隆白垩纪末期浮游有孔虫的发现及其年代意义[J].地质学报,2002,41(1):89-95.
    31.王成善,李祥辉,胡修棉.再论印度-亚洲大陆碰撞的启动时间[J].地质学报,2003,77(1):16-24.
    32.王成善,李祥辉,胡修棉,万晓樵等.特提斯喜马拉雅沉积地质与大陆古海洋学[M].北京:地质出版社,2005:373.
    33.王冉,夏斌,胡敬仁,周国庆,韦栋梁,王茜.仁布蛇绿混杂带洋岛型辉绿岩地球化学:藏南特提斯洋内热点[J].地球化学,2006,35(1):41-54.
    34.王天武,马瑞西.藏东南部南迦巴瓦地区变质作用特征[J].长春地质学院学报,1996,(26):152-158.
    35.王天武.南迦巴瓦地区变质作用概述[J].山地研究,1985,3(4):196-205.
    36.夏斌,王冉,陈根文.西藏仁布蛇绿岩壳层熔岩的岩石地球化学及成因[J].高校地质学报,2003,9(4):638-647.
    37.向华,张泽明,董听,祁敏,林彦蒿,雷恒聪.印度大陆俯冲过程中的高压变质与深熔作用:东喜马拉雅构造结南迦巴瓦杂岩的相平衡模拟研究[J].岩石学报,2013,29(11):3792-3802.
    38.肖玲玲,蒋宗胜,王国栋,万渝生,王涛,吴春明.赞皇前寒武纪变质杂岩区变质反应结构与变质作用P-T-t轨迹[J].岩石学报,2011,27(4):980-1002.
    39.肖序常,李庭栋,李光岑,常承法,袁学诚.喜马拉雅岩石圈构造演化总论,北京:地质出版社,1988:236.
    40.谢尧武等.西藏自治区地质调查院,1/25万拉萨-泽当幅区域地质调查报告[R].2007:317.
    41.徐德明,黄圭成,雷义均.西藏西南部休古嘎布蛇绿岩的Sm-Nd年龄及Nd-Sr-Pb同位素特征[J].中国地质,2008,35(3):429-435.
    42.许志琴,蔡志慧,张泽明,李化启,陈方远,唐哲民.喜马拉雅东构造结-南迦巴瓦构造及组构运动学[J].岩石学报,2008,24(7):1463-1476.
    43.许志琴,王勤,梁凤华,陈方远,许翠萍.电子背散射衍射(EBSD)技术在大陆动力学研究中的应用[J].岩石学报,2009,25(7):1721-1736.
    44.许志琴,杨经绥,李海兵,嵇少承,张泽明,刘焰.印度-亚洲碰撞大地构造[J],地质学报,2011,85(1):1-33.
    45.许志琴,杨经绥,李海兵,张建新,吴才来.造山的高原—青藏高原的地体拼合、碰撞造山及隆升机制[M],地质出版社,2007:458.
    46.尹集祥.青藏高原及邻区冈瓦纳相地层地质学[M].北京:地质出版社,1997:126.
    47.张进江,钟大贵,桑海清,周勇.哀牢山-红河构造带古新世以来多期活动的构造,年代学证据[J].地质学报,2006,80(2):278-278.
    48.张进江,钟大赉,季建清,丁林,桑海清.东喜马拉雅构造结大陆碰撞以来构造年代学框架及其与哀牢山-红河构造带的对比[C].矿物岩石地球化学通报,2001,20(4):243-244.
    49.张进江,季建清,钟大赉.东喜马拉雅南迦巴瓦构造结的构造格局及形成过程探讨[J].中国科学(D辑),2003,33(4):373-383.
    50.张旗,张振禹,周云生,李熠华.西藏变质岩中钾质白云母的b0值及其地质意义[J].科学通报,1979,24(3):120-123.
    51.张彦,陈文,陈克龙,刘新宇.成岩混层(I/S)Ar-Ar年龄谱型及39Ar核反冲丢失机理研究-以浙江长兴地区P-T界线粘土岩为例[J].地质论评,2006,52(4):556-561.
    52.张泽明,王金丽,赵国春,石超.喜马拉雅造山带东构造结南迦巴瓦岩群地质年代学和前寒武纪构造演化[J].岩石学报,2008,24(7):1477-1487.
    53.张泽明,郑来林,王金丽,赵旭东,石磊.东喜马拉雅构造结南迦巴瓦岩群中的石榴辉石岩-印度大陆向欧亚板块之下俯冲至80-100km深度的证据[J].地质通报,2007,26(1):3-12.
    54.张泽明,钟增球,游振东,胡开明.北大别木子店石榴辉石岩的麻粒岩相退变质作用[J].地球科学,2000,25(3):295-301.
    55.章振根,刘玉海,王天武.南迦巴瓦峰地区地质[M].北京:科学出版社,1992:185.
    56.赵国春,孙德有.浙西南陈蔡群变质阶段划分及变质作用P-T-D轨变研究[J].长春地质学院学报,1994,24(3):246-253.
    57.郑来林,耿全如,董翰,欧春生,王小伟.波密地区帕龙藏布残留蛇绿混杂岩带的发现及其意义[J].沉积与特提斯地质,2003,23(1):27-30.
    58.郑来林,金振民,潘桂棠,耿全如,孙志明.东喜马拉雅南迦巴瓦地区区域地质特征及构造演化[J].地质学报,2004,78(6):744-751.
    59.郑锡澜,常承法.雅鲁藏布江下游地区地质构造特征[J].地质科学,1979,(2):116-126.
    60.钟大赉,丁林.西藏南迦巴瓦峰地区发现高压麻粒岩[J].科学通报,1995,40(14):1343.
    61.钟大赉,丁林.青藏高原的隆起过程及其机制探讨[J].中国科学:D辑,1996,26(4):289-295.
    62.钟大赉,季建清,胡世玲.新特提斯洋俯冲时间:变质洋壳残片40Ar/39Ar微区年龄[J].科 学通报,1999,44(6):1782-1785.
    63.周云生,张旗.西藏岩浆活动和变质作用[M].北京:科学出版社,1981:363.
    64.朱弟成,潘桂棠,莫宣学,王立全,赵志丹,廖忠礼,董国臣.青藏高原中部中生代OIB型玄武岩的识别:年代学、地球化学及其构造环境[J].地质学报,2006,80(9):1312-1328.
    65. Aikman A. B., Harrison T. M., Ding L.. Evidence for early (N44 Ma) Himalayan crustal thickening, Tethyan Himalaya, southeastern Tibet[J]. Earth and Planetary Science Letters, 2008,274:14-23.
    66. Aitchison Jonathan C., Jason R. Ali, Aileen M. Davis. When and where did India and Asia collide? [J]. Journal of Geophysical Research,2007,112(B5).
    67. Aitchison Jonathan. C., Abrajevitch A., Ali J. R., Badengzhu, Davis A. M., Luo H., Liu J. B., McDermid I. R. C., Ziabrev S.. New insights into the evolution of the Yarlung Tsangpo suture zone, Xizang (Tibet), China[J]. Episodes,2002,25(2):90-94.
    68. Ali J. R., Aitchison J. C. Positioning Paleogene Eurasia problem:Solution for 60-50 Ma and broader tectonic implications [J]. Earth and Planetary Science Letters,2006,251(1):148-155.
    69. Allegre C. O., Courtillot V., Tapponnier P., Him A., Mattauer M., Coulon C., Xu R. Structure and evolution of the Himalaya-Tibet orogenic belt[J]. Nature,1984,307:17-22.
    70. Andersen T.. Correction of common Pb in U-Pb analyses that do not report 204Pb[J]. Chemical Geology,2002,192:59-79.
    71. Argand E.. La tectonique de l'Asie. Extrait ducompte-rendu du ⅩⅢe congres geologique Internationale, Brussels[J]. Congres Geologique International,1924,171-372.
    72. Beaumont C., Jamieson R. A., Nguyen M. H., Lee B.. Himalayan tectonics explained by extrusion of a low-viscosity crustal channel coupled to focused surface denudation[J]. Nature, 2001,414:738-742.
    73. Bhadra S., Bhattacharya A.. The barometer tremolite+tschermakite+2 albite= 2 pargasite+8 quartz:Constraints from experimental data at unit silica activity, with application to garnet-free natural assemblages[J]. American Mineralogist,2007,92(4):491-502.
    74. Bhattacharya A., Mohanty L., Maji A., Sen S. K., Raith M.. Non-ideal mixing in the phlogopite-annite binary:constraints from experimental data on Mg-Fe partitioning and a reformulation of the biotite-garnet geothermometer[J]. Contributions to Mineralogy and Petrology.,1992,111(1):87-93.
    75. Blisniuk P. M., Hacker B. R., Glodny J., Ratschbacher, L., Bi S., Wu Z., Calvert A. Normal shear zoneing in central Tibet since at least 13.5 Myr ago[J]. Nature,2001,412:628-632.
    76. Booth A. L., Chamberlain C. P., Kidd W. S. F., Zeitler P. K.. Constraints on the metamorphic evolution of the eastern Himalayan syntaxis from geochronologic and petrologic studies of Namche Barwa[J]. Geological Society of America Bulletin,2009,121:385-407.
    77. Booth A. L., Zeitler P. K., Kidd W. S.F., Wooden J., Liu Y. P., Idleman B, Hren M., Chamberlain C. P.. U-Pb zircon constraints on the tectonic evolution of southeastern Tibet, Namche Barwa area[J]. American Journal of Science,2004,304:889-929.
    78. Brookfield M. E.. The Himalayan passive margin from Precambrian to Cretaceous times[J]. Sedimentary Geology,1993,84:1-35.
    79. Brown M.. P-T-t evolution of mountain belts and the causes of regional metamorphism[J]. Journal of Geological Societ,1993,150:227-241.
    80. Burchfiel B. C, Chen Z., Hodges K. V., Liu Y., Royden L. H., Deng C. R., Xu J. N.. The South Tibetan Detachement System, Himalayan orogen:extension contemporaneous with and parallel to shortening in a collisional mountain belt[J]. Geological Society of America Special Paper,1992,269:1-41.
    81. Burchfiel B. C, Royden L. H.. North-south extension within the convergent Himalayan region[J]. Geology,1985,13(10):679-682.
    82. Burg J. P., Chen G. M.. Tectonics and structural formation of southern Tibet, China[J]. Nature, 1984,311:219-223.
    83. Burg J. P., Nievergelt P., Oberli F., Seward D., Davy P., Maurin J.C., Diao Z., Meier M. The Namche Barwa syntaxis, evidence for exhumation related to compressional crustal folding[J]... Journal of Asian Earth Science,1998,16:239-252.
    84. Burg J. P., Davy P., Nievergelt P., Oberli F., Seward D., Diao Z., Meier M.. Exhumation during crustal folding in the Namche-Barwa syntaxis[J]. Terra Nova,1997,9 (2):53-56.
    85. Burg J. P., Podladchikov Y. U.. Lithospheric scale folding:numerical modeling and application to the Himalayan syntaxes[J]. International Journal of Earth Science,1999,88: 1920-200.
    86. Canil D.. The Ni-in-garnet geothermometer:calibration at natural abundances[J]. Contributions to Mineralogy and Petrology,1999,136:240-246.
    87. Carosi R., Lombardo B., Musumeci G., Pertusati P. C.. Geology of the Highter Himalayan Crystallines in Khumbu Himal(eastern Nepal)[J]. Journal of Asian Earth Sciences,1999,17: 785-803.
    88. Catlos E. J., Dubey C. S., Harrison T. M., Edwards M. A.. Late Miocene movement within the Himalayan Main Centra:Thrust shear zone, Sikkim, Northern India[J]. Journal of Metamorphic Geology,2004,22:207-226.
    89. Catlos E. J., Harrison T. M., Manning C. E., Grove M., Rai S. M., Hubbard M. S., Upreti B. N.. Records of the evolution of the Himalayan orogen from in situ Th-Pb ion microprobe dating of monazite:EEastern Nepal and western Garhwal[J]. Journal of Asian Earth Sciences, 2002,20:459-479.
    90. Catlos E. J.. Geochronologic and thermobarometric constraints on the evolution of the main central thrust, Himalayan orogen[M]. PhD thesis, University of California, Los Angeles. 2000:345.
    91. Chen J., Huang B., Sun L.. New constraints to the onset of the India-Asia collision: Paleomagnetic reconnaissance on the Linzizong Group in the Lhasa Block[J]. China, Tectonophysics,2010,489:189-209.
    92. Chung S. L., Chu M. F., Zhang Y., Xie Y., Lo C. H., Lee T. Y., Wang Y. Tibetan tectonic evolution inferred from spatial and temporal variations in post-collisional magmatism[J]. Earth-Science Reviews,2005,68(3):173-196.
    93. Coleman M., Hodges K.. Evidence for Tibetan plateau uplift before 14 Myr age from a new minimum age for east-west extension[J]. Nature,1995,374:49-52.
    94. Coleman R. G., Lee D. E., Beatty L. B., Brannock W. W.. Eclogites and eclogites:their differences and similarities[J]. Geological Society of Amerrcan Bulletin,1965,76:483-508.
    95. Dale J., Holland T. Powell R. Hornblende-garnet-plagioclase thermobarometry:a natural assemblage calibration ofthe thermodynamics of hornblende[J]. Contributions to Mineralogy and Petrology,2000,140:353-362.
    96. de Sigoyer J., Chavagnac V., Blichert-Toft J., Villa I. M., Luais B., Guillot S., Mascle, G.. Glaucophane bearing eclogites in the Tso Morari dome (eastern Ladakh, NW Himalaya)[J]. European Journal of Mineralogy,1997,9:1073-1083.
    97. DeCelles P. G., Gehrels G. E., Quade J., Ojha T. P.. Eocene-early Miocene foreland basin development and the history of Himalayan thrusting, western and central Nepal[J]. Tectonics, 1998,17(5):741-765.
    98. Dewey J. F., Bird J. M.. Mountain belts and new global tectonics[J]. Journal of Geophysical Research,1970,75:2625-2685.
    99. Ding L., Kapp P., Wan X.. Paleocene-Eocene record of ophiolite obduction and initial India-Asia collision, south central Tibet[J]. Tectonics,2005,24:1-18.
    100. Ding L., Lai Q. Z. New geological evidence of crustal thickening in the Gangdese block prior to the Indo-Asian collision[J]. Chinese Science Bulletin,2003,48(15):1604-1610.
    101. Ding L., Zhong D. L., Liu Y., Kapp P., Harrison M.. Cenozic structural and metamorphic evolution of the eastern Himalayan syntaxis (Namche Barwa) [J]. Earth and Planetary Science Letters,2001,192:423-438.
    102. England P. C., Richardson S. W.. The influence of erosion upon the mineral fades of rocks from different metamorphic environments[J]. Journal of the Geological Society,1977,134(2): 201-213.
    103. England P. C., Thompson A. B.. Pressure-temperature-time paths of regional metamorphism I. Heat transfer during the evolution of regions of thickened continental crust[J]. Journal of Petrology,1984,25(4):894-928.
    104. Enkelmann E., Ehlers T. A., Zeitler P. K., Hallet B.. Denudation of the Namche Barwa antiform, eastern Himalaya[J]. Earth and Planetary Science Letters,2011,307(3):323-333.
    105. Gansser A.. The Geology of the Himalayas[J]. London, Wiley interscience, Geology,1964, 13(10):679-682.
    106. Garzanti E., Fort P. L., Sciunnach D.. First report of Lower Perm ian basalts in South Tibet: tholeiitic trkagmatism during break-up and incipient opening of Neotethys[J]. Journal of Asian Earth Sciences,1999,17:533-546.
    107. Garzanti E., Vezzoli G., Ando S., France-Lanord C., Singh S. K., Foster G. Sand petrology and focused erosion in collision orogens, the Brahmaputra case[J]. Earth and Planetary Science Letters,2004,220:157-174.
    108. Geng Q. R., Pan G. T., Zhen, L. L., Chen Z. L., Fisher R. D., Sun Z. M., Ou C. S., Dong H., Wang X. W., Li S., Lou X. Y., Fu H.. The eastern Himalayan syntaxis:major tectonic domains, ophiolitic melanges and geologic evolution[J]. Journal of Asian Earth Sciences, 2006,27:265-285.
    109. Gerya T. V., Perchuk L. L., Triboulet C。, Audren C. Sez'ko A. I.. Petrology of the Tumanshet Zonal Metamorphic Complex, Eastern Sayan[J]. Petrology,1997,5/6:503-533.
    110. Ghanzanfar M., Chaudhry M. N.. Reporting MCT in Northwest Himalaya, Pakistan[J]. University of Punjob Geological Bulletin,1986,22:13-56.
    111. Grasemann B., Fritz H., Vannay J. C. Quantitative kinematic flow analysis from the Main Central Thrust Zone (NW-Himalaya, India):implications for a decelerating strain path and the extrusion of orogenic wedges[J]. Journal of Structural Geology,1999,21(7):837-853.
    112. Guillot S., de Sigoyer J., Lardeaux J. M., Mascle G. Eclogitic metasediments from the Tso Morari area (Ladakh, Himalaya):Evidence for continental subduction during India-Asia convergence[J]. Contributions to Mineralogy and Petrology,1997,128:197-212.
    113. Guillot S., Mascle G., Lardeaux J. M., Colchen M., deSigoer J.. Anew discovery of eclogites from the Himalaya, Tso Morari dome unit (Northwestern India)[J]. Mitt Geol Inst ETH Zurich Univ Zurich Neue Folge,1995,298:84-87.
    114. Guilmette C., Indares A., Hebert R.. High-pressure anatectic paragneisses from the Namche Barwa, Eastern Himalayan Syntaxis:Textural evidence for partial melting, phase equilibria modeling and tectonic implications[J]. Lithos,2011,124:66-81.
    115. Guo L., Zhang H. F., Harris N., Parrish R., Xu W. C., Shi Z. L.. Paleogene crustal anatexis and metamorphism in Lhasa terrane, eastern Himalayan syntaxis:evidence from U-Pb zircon ages and Hf isotopic compositions of the Nyingchi Complex[J]. Gondwana Research,2012, 21(1):100-111.
    116. Harrison T. M., Grove M., McKeegan K. D., Coath C. D., Lovera O. M., Le Fort P.. Origin and episodic emplacement of the Manaslu intrusive complex, Central Himalaya[J]. Journal of Petrology,1999,40:3-19.
    117. Harrison T. M., Ryerson F. J., LeFort P., Yin A., Lovera O., Catlos E. J.. A late Miocene-Pliocene origin for the central Himalayan inverted metamorphism[J]. Earth and Planetary Science Letters,1997,146:E1-E8.
    118. Heinrich W., Andrehs G., Franz G.. Monazite-xenotime miscibility gap thermometry I. An empirical calibration[J]. Journal of Metamorphic Geology,1997,15:3-16.
    119. Hodges K. V., Parrish R. R., Searle M. P.. Tectonic evolution of the central Annapurna Range, Nepalese Himalayas[J]. Tectonics,1996,15:1264-1291.
    120. Hodges K. V., Crowley P. D.. Error estimation and empirical geothermobarometry for pelitic systems[J]. American Mineralogist,1985,70:702-709.
    121. HoocESr K. V., Spsen F. S.. Geothermometry, geobarometry and the Al2SiO5 triple point at Mt.Moosilauke,New Hampshire[J].1982,67:1118-1134.
    122. Holdaway M. J.. Recalibration of the GASP geobarometer in light of recent garnet and plagioclase activity models and versions of the garnet-biotite geothermometer [J].American Mineralogist,2001,86:1117-1129.
    123. Holdaway M. J.. Application of new experimental and garnet Margules data to the garnet-biotite geothermometer[J]. American Mineralogist,2000,85:881-892.
    124. Holland T. J. B., Powell R.. An internally consistent thermodynamic data set for phases of petrological interest[J]. Journal of metamorphic Geology,1998,16(3):309-343.
    125. Holland T., Blundy J.. Non-ideal interactions in calcic amphiboles and their bearing on amphibole-plagioclase thermometry[J]. Contributions to Mineralogy and Petrology,1994, 116(4):433-447.
    126. Holt W. E., Ni J. F., Wallace T. C. Haines A. J.. The active tectonics of the eastern Himalayan syntaxis and surrounding regions[J]. Journal of Geophysical Research:Solid Earth,1991,96: 14595-14632
    127. Hoskin P. W., Schaltegger U.. The composition of zircon and igneous and metamorphic petrogenesis[J]. Reviews in mineralogy and geochemistry,2003,53(1):27-62.
    128. Hubbard M. S., Harrison T. M..4 Ar-39Ar age constraints on deformation and metamorphism in the MCT zone and Tibetan slab, eastern Nepal Himalaya[J]. Tectonics,1989,8:865-880.
    129. Indares A.. Metamorphic interpretation of high-pressure-temperature metapelites with preserved growth zoning in garnet, eastern Grenville Province, Canadian Shield[J]. Journal of Metamorphic Geology,1995,13:475-486.
    130. Indares A., and Martingole J.. Biotite-garnet geothermometry in the granulite facies:the influence of Ti and Al in biotite[J]. American Mineralogist,1985,70:272-278.
    131. Jessup M., Newel D. L., Cottle J. M., Berger A., Spotila J.. Orogen-parallel extension and exhumation enhanced by denudation in the trans-Himalayan Arun River gorge, Ama Drime Massif, Tibet-Nepal[J]. Geology,2008,36:587-590.
    132. Ji S. C., Mainprice D., Boudier F.. Sense of shear in high-temperature movement zones from the fabric asymmetry of plagioclase feldspars[J]. Journal of Structural Geology,1988,10(1): 73-81.
    133. Johnson N. M., Sticks J., Tauxe L., Cerveny P. F., Tahirkheli R. A. K.. Palaeomagnetic chronology fluvial process and implications of the Siwalik deposits near Chinji Village, Pakistan[J]. Journal of Geology,1985,93:27-40.
    134. Kaneko Y., Katayama I., Yamamoto H., Misawa K., Ishikawa M., Rehman H. U., Kausar A. B., Shiraishi K.. Timing of Himalayan ultrahigh-pressure metamorphism:Sinking rate and subduction angle of the Indian continental crust beneath Asia[J]. Journal of Metamorphic Geology,2003,21:589-599.
    135. Kapp P., DeCelles P. G., Heizler M., Ding L., Gehrels G. E.. Geological records of the Lhasa-Qiangtang and Indo-Asian collisions in the Nima area of central Tibet[J]. Geological Society of American Bulletin,2007,119(7/8):917-932.
    136. Karlstrom k. E.. Towards a syntectonic paradigm for granites[J]. Eos Tans,1989,70:762-770.
    137. Kohn M. J., Spear F. S.. Retrograde net transfer reaction insurance for pressure-temperature estimates[J]. Geology,2000,28:1127-1130.
    138. Koons P. O., Zeitler P. K., Chamberlain C. P., Craw D., Meltzer A. S.. Mechanical links between erosion and metamorphism in Nanga Parbat, Pakistan Himalaya[J]. American Journal of Science,2002,302:749-773.
    139. Kruhl J. H.. Prism and basal-plane parallel subgrain boundaries in quartz:a microstructural geothermobarometers[J]. Journal of Metamorphic Geology,1996,14:581-589.
    140. Kruse R., Stunite H.. Deformation mechanisms and phase distribution in mafic high-temperature mylonites from the Jotun Nappe, Southern Norway[J]. Tectonophysics, 1999,303:223-249.
    141. Le Fort P., Gullot S., Peeher A.. HP metamorphic belt along the Indus suture zone of NW Himalaya:new diseoveries and significance[J]. Comptes Rendus de I'Academie des Sciences-Series IIA-Earth and Planetary Science,1997,325:773-778.
    142. Le Fort P.. Himalayas:the collided range. Present knowledge of continental arc[J]. American Journal of Science,1975, A275:1-44.
    143. Le Fort P.. Evolution of the Himalaya, in The Tectonics of Asia[A], edited by Yin, A. and T. M. Harrison, Cambridge University Press, New York,1996,95-106.
    144. Le Fort P., Debon F., Sonet J.. The lower Palaeozoic 'Lesser Himalayan'granitic belt: emphasis on the Simchar pluton of central Nepal[A]. In:Shams F. A. (ed.) Granites of the Himalayas, Karakorum and Hindu Kush. Punjab University, Lahore, Pakistan,1983, 235-255.
    145. Leake B. E., Woolley A. R., Arps C. E. S., Birch W. D., Gilbert M. C., Grice J. D., Hawthorne F. C., Kato A., Kisch H. J., Krivovichev V. G., Linthout K., Laird J., Mandarino J. A., Maresch W. V., Nickel E. H., Rock N. M. S., Schumacher J. C., Smith D. C., Stephenson N. C. N., Ungaretti L., Whittaker E. J. W., Youzhi G. Nomenclature of amphiboles: Report of the Subcommittee on Amphiboles of the International Mineralogical Association, Commission on New Minerals and Mineral Names[J]. American Mineralogist,1997,82: 1019-1037.
    146. Liebke U., Appel E., Neumann U., AntolinB., Ding L., Qiang X.. Position of the Lhasa terrane prior to India-Asia collision derived from palaeomagnetic inclinations of 53 Ma old dykes of the Linzhou Basin: Constraints on the age of collision and post-collisional shortening within the Tibetan Plateau[J]. Geophysical Journal International,2010,182: 1199-1215.
    147. Lin T. H., Lo C. H., Chung S. L., Hsu F. J., Yeh M. W., Lee T. Y, Liu D..40Ar/39Ar dating of the Jiali and Gaoligong shear zones: Implications for crustal deformation around the Eastern Himalayan Syntaxis[J]. Journal of Asian Earth Sciences,2009,34(5):674-685.
    148. Lin Y. H., Zhang Z. M., Dong X., Shen K., Lu X.. Precambrian evolution of the Lhasa terrane, Tibet:Constraint from the zircon U-Pb geochronology of the gneisses[J]. Precambrian Research,2013,237:64-77.
    149. Liu G., Einsele G. Sedimentary history of the Tethyan basin in the Tibetan Himalayas[J]. Geology Rundsch,1994,83:32-61.
    150. Liu Y., Siebel W., Theye T., Massonne H. J.. Isotopic and structural constraints on the late Miocene to Pliocene evolution of the Namche Barwa area, eastern Himalayan syntaxis, SE Tibet[J]. Gondwana Research,2011,19(4):894-909.
    151. Liu Y., Zhong D. L.. Petrology of high-pressure granulites from the eastern Himalayan syntaxis[J]. Journal of metamorphic Geology,1997,15(4):451-466.
    152. Liu Y. S., Gao S., Hu Z. C., Gao C. G., Xu J., Zong K. Q., Wang D. B.. Continental and oceanic crust recycling-induced melt-peridotite interactions in the Trans-North China Orogen: U-Pb dating, Hf isotopes and trace elements in zircons from mantle xenoliths[J]. Journal of Petrology,2010a,51(1-2):537-571.
    153. Liu Y. S., Hu Z. C., Zong K. Q., Gao C. G., Gao S., Xu J., Chen H. H.. Reappraisement and refinement of zircon U-Pb isotope and trace element analyses by LA-ICP-MS[J]. Chinese Science Bulletin,2010b,55(15):1535-1546.
    154. Liu Y., Massonne H. J., Siebel W., Xiao X.. Geological aspects of the eastern Himalayan syntaxis:new constraints from structural, petrologic and zircon SHRIMP data: Himalaya[A]. In:Saklani (Ed.), (Geological Aspects) [C],2006,4:325-388.
    155. Lombardo B, Rolfo F. Two contrasting eclogite types in the Himalaya:implications for the Himalayan orogeny[J]. Journal of Geodynamics,2000,30:37-60.
    156. Lombardo B., Pertusati P., Rolfo F., Visona D.. First report of eclogites from the E Himalaya: implications for the Himalayan orogeny[J]. Memorie di Scienze Geologiche (Padova),1998, 50:67-68.
    157. Lombardo B., Rolfo F.. Two contrasting eclogite types in the Himalayas:implications for the Himalayan orogeny[J]. Journal of Geodynamics,2000,30(1),37-60.
    158.Ludwig K. R..1SOPLOT 3.00:A Geochronological Toolkit for Microsoft Excel[CP]. Berkeley:Berkeley Geochromology Center, California,2003.
    159. Malaspina N., Hermann J., Scambelluri M., Compagnoni R.. Multistage metasomatism in ultrahigh-pressure mafic rocks from the North Dabie Complex (China)[J]. Lithos,2006,90: 19-42.
    160. Mary L., Singh S., Jain A. K., Klemperer S. L., Manickavasagam R. M.. The onset of India-Asia continental collision:Early, steep subduction required by the timing of UHP metamorphism in the western Himalaya[J]. Earth and Planetary Science Letters,2005,234: 83-97.
    161.Mattews A.. Oxygen isotope geothermometers for metamorphic rocks[J]. Journal of Metamorphic Geology,1994,12:211-219.
    162. Miller R. B., Paterson S. R.. The transition from magmatic to high-temperature solid-state deformation:implications from the Mount Stuart batholith, Washington[J]. Journal of Structural Geology,1994,16(6):853-865.
    163. Mo X., Zhao Z., Zhou S., Dong G., Guo T., Wang L.. Evidence for timing of the initiation of India-Asia collision from igneous rocks in Tibet[A]. In AGU Fall Meeting Abstracts[C],2002, 1:1201.
    164. Molnar P., Tapponnier P.. Cenozoic tectonics of Asia: Effects of a continental collision[J]. Science,1975,189:419-426.
    165. Morimoto N., fabries J., Ferguson A. K., Ginzburg I. V., Ross M., Seifert F. A., Zussman J., Aoki K., Gottardi G.. Nomenclature of pyroxenes[J]. Mineralogy and Petrology,1988,39(1): 55-76.
    166. Mukherjee B. K., Sachan H. K., Ogasawara Y., Muko A., Yoshioka N.. Carbon-ate-bearing UHPM rocks from the Tso-Morari region, Ladakh, India: Petrological implications[J]. International Geology Review,2003,45:49-69.
    167. Murphy M. A., Yin A., Harrison T. M., Durr S. B., Chen Z., Ryerson F. J., Kidd W. S. F., Wang X, Zhou X.. Did the Indo-Asian collision alone create the Tibetan Plateau? [J], Geology, 1997,25:719-722.
    168.Nakata T.. Active shear zones of the Himalaya in India and Nepal[J]. Special paper Geological Society of America,1989,232:243-264.
    169. Nimis P.. Clinopyroxene geobarometry of magmatic rocks. Part2.Structural geobarometers for basic to acid, tholeiitic and mildly alkaline magmatic systems[J].Contributions to Mineralogy and Petrology,1999,135:62-74.
    170. O'Brien P. J., Zotov N., Law R., Khan M. A., Jan M. Q.. Coesite in eclogite from the Upper Kaghan Valley, Pakistan:A first record and implications [A], (abstracts of the 14th Himalaya-Karakorum-Tibet workshop, Kloster Ettal)[C]. Terra Nostra,1999,99:109-111.
    171. O'Brien P. J., Zotov N., Law R., Khan M. A., Jan M. Q.. Coesite in Himalayan eclogite and implications for models of India-Asia collision [J]. Geology,2001,29:435-438.
    172. Pan F. B., Zhang H. F., Harris N., Xu W. C., Guo L.. Oligocene magmatism in the eastern margin of the east Himalayan syntaxis and its implication for the India-Asia post-collisional process[J]. Lithos,2012,154:181-192.
    173. Parrish R., Gough S. J., Searle M., Dave W.. Plate velocity exhumation of Ultrahigh-pressure eclogites in the Pakistan Himalaya[J]. Geology,2006,34:989-992.
    174. Paterson S. R., Tobisch O. T. Using pluton ages to date regional deformations:Problems with commonly used criteria[J]. Geology,1988,16(12):1108-1111.
    175.Pecher A.. Deformations et metamorphisme associes a une zone de cisaillement. Example dugrand chevauchement central himalayen (MCT), transversale des Annapurna et du Manaslu, Nepal[M]. PHD Grenoble:1978:310.
    176. Pecher A.. The metamorphism in Central Himalaya[J]. Journal of Metamorphic Geology, 1989,7:31-41.
    177. Pognante U., Spencer D. A.. First record of eclogites from the High Himalayan belt, Kaghan Valley (northern Pakistan) [J]. European Journal of Mineralogy,1991,3:613-618.
    178. Pyle J. M., Spear F. S.. An empirical garnet (YAG)-xenotime thermometer[J]. Contributions to Mineralogy and Petrology,2000,138:51-58.
    179. Ratschbacher L., Frisch W., Chen C.S., Pan G. T.. Deformation and motion along the southern margin of the Lhasa Block prior to and during the India-Asia collision[J]. Journal of Geodynamics,1992,16/1-2:21-54.
    180. Rowley D. B.. Age of initiation of collision between India and Asia:A review of stratigraphic data[J]. Earth and Planetary Science Letters,1996,145(1):1-13.
    181. Sachan H. K., Mukherjee B. K., Ogasawara Y., Maruyama S., Ishida H., Atsumi M. U. K. O., Yoshioka N.. Discovery of coesite from Indus suture zone (ISZ), Ladakh, India:evidence for deep subduction[J]. European Journal of Mineralogy,2004,16:235-240.
    182. Searle M. P.. Role of the Red River Shear zone, Yunnan and Vietnam, in the continental extrusion of SE Asia[J]. Journal of the Geological Society,2006,163(6):1025-1036.
    183. Searle M. P.. Emplacement of Himalayan leucogranites by magma injection along giant sill complexes:examples from the Cho Oyu, Gyachung Kang and Everest leucogranites (Nepal Himalaya) [J]. Journal of Asian Earth Sciences,1999,17:773-783.
    184. Searle M. P., Godin L.. The South Tibetan Detachment and the Manaslu Leucogranite:a structural re-interpretation and restoration of the Annapurna-Manaslu Himalaya, Nepal [J]. Journal of Geology,2003,111:505-523.
    185. Searle M. P., Windley B. F., Coward M. P., Cooper D. J. W., Rex A. J., Rex D. C., Kumar S.. The closing of Tethys and the tectonics of the Himalaya[J]. Bulletin Geological Society of America,1987,98:678-701.
    186. Seward D., Burg J.. Growth of the Namche Barwa Syntaxis and associated evolution evolution of the Tsangpo Gorge:Constraints from structural and thermochronological data[J]. Tectonophysics,2008,451(1):282-289.
    187. Seward D., Burg J. P.. Growth of the Namche Barwa Syntaxis and associated evolution of the Tsangpo Gorge:Constraints from structural and thermochronological data[J]. Tectonophysics, 2008,451:282-289.
    188. Singh S. K., France-Lanord C.. Tracing the distribution of erosion in the Brahmaputra watershed from isotopic compositions of stream sediments[J]. Earth and Planetary Science Letters,2002,202:645-662.
    189. Spear F. S., Florence F. P.. Thermobarometry in granulites:pitfalls and new approaches[J]. Precambrian Research,1992,55:209-241.
    190. Spear F. S., Parrish R. R.. Petrology and cooling rates of the Valhalla Complex, British Columbia, Canada[J]. Journal of Petrology,1996,37:733-765.
    191. Spear F. S.. Relative thermobarometry and metamorphic P-T paths[A]. In:Daly J. S., Cliff R. A., Yardley B. W. D., eds. Evolution of Metamorphic Belts[C]. London:Geological Society Special Publication,1989,43:63-81.
    192. Spear F. S.. Metamorphic phase equilibria and pressure-temperature-time paths[M]. Mineralogical society of America Monograph,1994:799.
    193. Spencer D. A., Pognante U., Tonarini S.. Geochemical and Sr±Nd isotopic characterisation of Higher Himalayan eclogites (and associated metabasites)[J]. European Journal of Mineralogy, 1995,7:89-102.
    194. Spencer D. A., Gebauer D.. SHRIMP evidence for a Permian protolith age and a 44 Ma metamorphic age for the Himalayan eclogites (Upper Kaghan, Pakistan):implications for the subduction of Tethys and the subdivision terminology of the NW Himalaya[A].11th Himalaya-Karakorum-Tibet Workshop[C].1996,147.
    195. Streule M. J., Strachan R. A., Searle M. P., Law R. D.. Comparing Tibet-Himalayan and Caledonian crustal architecture, evolution and mountain building processes[J]. Geological Society Special Publications,2010,335:207-232.
    196. Sun Z., Jiang W., Li H. B., Pei J. L., Zhu Z. M.. New paleomagnetic results of Paleocene volcanic rocks from the Lhasa Block:Tectonic implications for the collision of India and Asia[J]. Tectonophysics,2010,490(3):257-266.
    197. Tan X. D., Gilder S., Kodama K. P., Jiang W., Han Y. L., Zhang H., Xu H. H., Zhou D.. New paleomagnetic results from the Lhasa Block:Revised estimation of latitudinal shortening across Tibet and implications for dating the India-Asia collision[J]. Earth Planetary Science Letters,2010,293(3):396-404.
    198. Tapponnier P., Lacassin R., Leloup P. H. Scharer U., Zhong D. L., Wu H. W., Liu X. H., Ji S. C, Zhang L. S., Zhong J. Y. The Ailao Shan/Red River metamorphic belt:Tertiary left lateral shear between Indochina and South China[J]. Nature,1990,343:431-437.
    199. Tonarini S., Villsl I. M., Oberli F.. Eoeene age of eclogite metamorphism in Pakistan Himalays:implications for India-Eurasia collision[J]. Terra Nova,1993,5:13-20.
    200. Tsai C. H., Liou J. G. Eclogite-facies relics and inferred ultrahigh-pressure metamorphism in the North Dabie Complex, central-eastern China[J]. Am. Mineral.,2000,85:1-8.
    201. Valdiya K. S., Cronin V. S.. Tectonics and Evolution of the Central Sector of the Himalaya and Discussion[J]. Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences,1988,326(1589):151-175.
    202. Vannay J. C, Grasemenn B.. Inverted metamorphism in the High Himalaya of Himachal Pradesh (NW India):Phase equilibra versus thermobarometry[J]. Schweizerische Mineralogische und Petrographische Mitteilungen,1998,78:107-132.
    203. Wan X. Q., Jansa L. F., Sarti M.. Cretaceous and Tertiary boundary strata in southern Tibet and their implication for India-Asia collision[J]. Lethaia,2002,35(2):131-146.
    204. Wang C. S., Li X. H., Hu X. M.. Age of initial collision of India with Asia:review and constraints form sediments in southern Tibet[J]. Acta Geologica Sinica,2003,77:16-24
    205. Wu C. M., Zhao G. C. The applicability of the GRIPS geobarometry in metapelitic assemblages[J]. Journal of Metamorphic Geology,2006a,24(4):297-307.
    206. Wu C. M., Zhao G. C. Recalibration of the garnet-muscovite (GM) geothermometer and the garnet-muscovite-plagioclase-quartz (GMPQ) geobarometer for metapelitic assemblages [J]. Journal of Petrology,2006b,47(12):2357-2368.
    207. Wu C. M. Zhao G. C. The metapelitic garnet -biotite-muscovite -aluminosilicate -quartz (GBMAQ) geobarometer[J]. Lithos,2007,97:365-372.
    208. Wu C. M., Zhang J. Ren L. D.. Empirical garnet-biotite-plagioclase-quartz (GBPQ) geobarometry in medium-to high-grade metapelites[J]. Journal of Petrology,2004,45: 1907-1921.
    209. Xia B., Chen G. W., Wang R., Wang Q.. Seamount volcanism associated with the Xigaze ophiolite, Southern Tibet[J]. Journal of Asian Earth Sciences,2008,32(5):396-405.
    210. Xu Z. Q., Ji S. C, Cai Z. H., Zeng L. S., Geng Q. R., Cao H.. Kinematics and dynamics of the Namche Barwa Syntaxis, eastern Himalaya:Constraints from deformation, fabrics and geochronology[J]. Gondwana Research,2012,21(1):19-36.
    211. Yaneko Y., Katayama I., Yamamoto H., Misawa K., Ishikawa M., Rehman H. U., Shiraishi K.. Timing of Himalayan ultrahigh-pressure metamorphism:sinking rate and subduction angle of the Indian continental crust beneath Asia[J]. Journal of Metamorphic Geology,2003,21: 589-599.
    212. Yin A., Harrison T. M.. Geologic evolution of the Himalayan-Tibetan Orogen[J]. Annual Review of Earth and Planetary Sciences,2000,28:211-280.
    213. Yin A.. Cenozoic tectonic evolution of the Himalayan orogen as constrained by along-strike variation of structural geometry, exhumation history, and foreland sedimentation[J]. Earth-Science Reviews,2006,76:1-131.
    214. Zeitler P. K., Meltzer A. S., Koons P. O., Craw D., Hallet B., Chamberlain C. P., Kidd W. S. F., Park S. K., Seeber L., Bishop M., Shroder J.. Erosion, Himalayan geodynamics, and the geomorphology of metamorphism[J]. GSA Today,2001,11:4-8.
    215. Zeng L. S., Gao L. E., Xie K. J., Liu-Zeng J.. Mid-Eocene high Sr/Y granites in the northern Himalayan gneiss domes:melting thickened lower continental crust[J]. Earth and Planetary Science Letters,2011,303:251-266.
    216. Zhang J. J., Ji J. Q., Zhong D. L., Ding L., He S. D.. Structural pattern of eastern Himalayan syntaxis in Namjagbarwa and its formation process[J]. Science in China (Series D:Earth Sciences),2004,47(2):138-150.
    217. Zhang Z. M., Zhao G. C., Santosh M., Wang J. L., Dong X., Liou J. G.. Two-stages of granulite-facies metamorphism in the eastern Himalayan syntaxis, south Tibet:petrology, zircon geochronology and implications for the subduction of Neo-Tethys and the Indian continent beneath Asia[J]. Journal of Metamorphic Geology,2010a,28:719-733.
    218. Zhao G. C., Sun M., Wilde S. A., Li S. Z.. Late Archean to Paleoproterozoic evolution of the North China Craton:key issues revisited[J]. Precambrian Research,2005,136:177-202.
    219. Zhao G. C., Wilde S. A., Cawood P. A., Lu L. Z.. Thermal evolution of the Archaean basement rocks from the eastern part of the North China Craton and its bearing on tectonic setting[J], International Geology Review,1998,40:706-721.
    220. Zhao W. J., Nelson K. D., Project INDEPTH Team. Deep seismic reflection evidence for continental underthrusting beneath southern Tibet[J]. Nature,1993,366:557-559.

© 2004-2015 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅:66554900、66554949;咨询服务:66554800;科技查新:66554700