用户名: 密码: 验证码:
西南区野生马蹄金遗传多样性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
马蹄金是目前运用较广泛的草坪植物,在我国西南地区有丰富的野生资源,极具开发利用价值。本试验以西南地区收集的23份野生马蹄金种质材料为研究对象,从种群生态、形态学水平、生理特性、DNA水平揭示其遗传多样性,初步探讨了其遗传结构,并以美国进口品种普通马蹄金(Dichondra)为对照从外部形态及抗性方面与野生材料进行比较研究,为进一步筛选马蹄金新品种选育和开发利用奠定基础。
     研究结果表明:
     (1)在本调查区域内,野生马蹄金分布于海拔300~1970m间;采集地年均温在14℃~18.1℃,年均相对湿度63%~81%,气候多属于亚热带湿润季风气候。对土壤要求不高,在黄壤、黄红壤、红壤、砖红壤、紫色土等多种土壤类型中都有分布。其分布特征以片状分布为主,在群落中很少以伴生种出现。群落生境可以分为:河滩草地型(田坎、沟边)、山地丘陵型(公路边和山坡)、林地型(树林下)。野生马蹄金材料在10个形态指标上出现较大变异,其中叶长、叶宽、草层高度、叶柄长、分枝数、主茎长以及叶片、匍匐茎颜色的变异都达到20%以上。相关分析表明:随着海拔的增加,马蹄金叶片面积相应增大(0.37-1.35cm~2),叶柄增粗(0.47-0.80mm),叶片厚度变小(0.189-0.096mm)。聚类分析结果:23份野生材料可分为4个类群,分别是大叶高丛型、大叶矮丛型、小叶矮丛型、小叶短茎型。
     (2)对野生马蹄金材料抗病性研究表明,各材料间抗病性差异明显。其中发病率变幅为0.35%~29.84%,变异系数1.534;病斑数变幅0.77~67.1,变异系数为1.615。根据材料的发病情况和严重程度可将野生材料分为3个等级。其中SD200512感病最为严重,其受害程度远远大于其他材料,为高感材料;SD200407为抗病材料,其余材料感病程度界于二者间。
     (3)对马蹄金抗寒性的观察表明,不同材料越冬率、枯黄期和返青时间有差异,其中四川纳溪SD200310、大邑SD200406、重庆山SD200511、云南先锋YD200502、贵州打羊GD200501等地材料具有较好的抗寒性。
     (4)应用ISSR标记对23份野生马蹄金遗传多样性进行检测,结果表明:14个ISSR引物共产生138条扩增条带,多态性条带131条,多态性条带比率94.9%;扩增条带变幅6~15条,每个多态性引物平均能产生9.36条多态性带。野生马蹄金材料的遗传相似系数(GS)变化范围为0.211~0.871。运用ISSR标记能够揭示西南地区野生马蹄金较大的遗传多样性。基于遗传相似系数的UPGAM聚类分析表明,利用ISSR标记也可将供试材料完全区分开,23份野生马蹄金分为4大类。依据ISSR遗传相似系数(GS)划分的类群同地理分布也有一定关系。
     (5)根据采集地的生态环境的差异,可将23份马蹄金野生材料分为5个生态地理类群,即成都平原类群、盆周山区类群、川中丘陵类群、云南类群、贵州类群。对马蹄金各地理类群的遗传多样性指数分析表明:川中丘陵群体的遗传距离(GD)值最大,与之对应的衡量该群体多样性的Shannon指数(Ho)和Simpson指数(D)也是最大值。说明川中丘陵的几份材料的遗传多样性水平较其他类群高。对各地理类群而言,物种水平上的表型多样性H_(sp)=0.6286,而群体水平上的表型多样性H(group)=0.2807,类群内和类群间的表型多样性分别是H_(within)=0.4465和H_(between)=0.5535。表明类群内的遗传变异占总变异的44.65%,而类群间的遗传变异占总变异的55.35%,马蹄金野生材料地理类群间的遗传变异大于各地理类群内的遗传变异。
     (6)马蹄金除11月~2月停止生长外,其余时间均有开花。主要花期集中在4月~6月,7月~9月为结实期。四川地区野生材料中SD200301、SD200302、SD200303、SD200304、SD200310、SD200311均能结实。
     (7)种子发芽率测定结果表明:结实材料的种子活性有显著差异,其中SD200301、SD200302的种子活力指数最高(45.2),在未经处理的情况下它们的发芽率均达到50%以上。可望在今后进行种子生产,为马蹄金的有性繁殖提供基础。
Dichondra repens is one of the widely-use lawn plant. There is abundant native Dichondra repens in the South-west of China, with great potential of utilization. After the research of 23 Dichondra repens germplasm in the south-western of China on their hereditary constitution and diversity. In view of their abundant variation and genitic diversity, systematic studies on different levels had been made on pop-ecology、morphology、physiological and DNA markers. Comparative study on Dichondra repens germplasm from the extra-morph and resistance with the species as check, for screening the excellent strain and strenthen to reserve or utilize Dichondra repens germplasm. The main research fruits went as follows:
     (1) In this study area, The native Dichondra repens germplasm were distributed at the altitude of 300m~1970m. The sam of year in collection area was 14℃~18.1℃, annum relative humidity was 63%~81%, climate was the subtropical zone moist monsoon climate, and they could grow in lots of types of soil, such as yellow soil、yellow-red soil、red soil、laterite、purple soil, and so on.. The main characteristic of distribution was lamellar and seldem as accompanying species in community. The ecological environment types could be classified into three types: flood grassland type(field candela, ditch side), mountain hills type(highway, hillside), wood land type(under the woods). The native population showed obvious variation in 10 external morphological characters of Dichondra repens, leave length、leave width、herb hight、leafstalk length、arborization numbers、main stem and the color of leaf and creeping stem had the coefficient of variation were over 20%. analysis of correlation showed that with the increasement of altitude, an area of Dichondra repens leaf got larger (0.37-1.35cm~2), leafstalk more thickening (0.47-0.80mm), thickness of leave got more thin (0.189-0.096mm). cluster analysis showed that 23 populations could be classfied into 4 groups based on the results of clustering analysis, large leaf and high stock type; large leaf and short stock type; small leaf and short stock type and small leaf and short stem type.
     (2) The study on disease resistance of Dichondra repens showed that there were obvious difference between each accession, the amplitude of disease incidence was 0.35%~29.84%, coefficient of differentiation was 1.534; the amplitude of the number of disease spots was 0.77~67.1, coefficient of differentiation was 1.615. according to the incidence and serious extent of each accession, all of the accessions could be divided into 3 grade, among the total, SD200512 had the most serious incidence, was the weak disease resistance accession; SD200407 was the strong disease resistance accession, incidence of other between the two accessions.
     (3) After an observation on cold resistant of Dichondra repens the results showed different accession had differences in hibemalisation rate, time of dry, time of return green. among which SD200310 from NaXi in SiChuan, SD200406 from DaYi, SD200511 from BiShan in ChongQing, YD200502 from xianFeng in YunNan, GD200501 from DaYang in GuiZhou showed better cold resistance..
     (4) Genetic diversity of 23 native Dichondra repens accessions from south-western China was tested by Using ISSR Maker, the results showed a total of 138 bands were amplified by 14 ISSR primers, among which 131 bands were found to be polymorphic, the percentage of polymorphic bands reached to 94.9%. And consequently a number of stable DNA fragments were produced, ranging from 6 to 15 per primer, with 9.4 polyrnorphic bands per primer on average. The ISSR-based genetic similarity values among 23 Dichondra repens accessions ranged from 0.211 to 0.871. Abundant genetic diversity among Dichondra repens accessions could be revealed by ISSR marker. Analysis of cluster showed that all the 23 accessions could be distinguished by ISSR markers and divided into 4 groups according to UPGMA method. The results also showed that the genetic diversity in Dichondra repens accessions based on ISSR genetic similarity was correlated with geographic distribution to some degree.
     (5) According to the difference of ecology environment in collecting areas, all the 23 D. repens accessions could be divided into 5 ecogeography groups, including ChengDu plain group, group for Amb-basin mountain area in SiChuan Province, group for hills in the middle of SiChuan Province, YunNan group, GuiZhou group. After the analysis of genetic polymorphism indexes of each geographical groups of D. repens, the results showed the biggest value of GD was group of Amb-basin mountain area in SiChuan, corresponding with the biggest Shannon index and Simpson index. it indicated that the level of genetic diversity in those accessions were greater than other groups. when it come to each geography group, phenotype diversity on species level H_(sp)=0.6286, but phenotype diversity on group level H_(group)=0.2807, phenotype diversity on within group and between group were H_(within)=0.4465 and H_(between)=0.5535. So the genetic variation of wild D. repens among geography groups (55.35%) was greater than that within geography groups (44.65%).
     (6) Dichondra repens blooming in whole of the year except stopping growth in winter. the main blooming date centered on april to June, time of fructification was on July to september. All of the Dichondra repens accessions could be blooming, but there were significant difference in seed-sitting among them. among the SiChuan Dichondr repens accessions of, SD200301、SD200302、SD200303、SD200304、SD200310、SD200311 could be fruited.
     (7) Studise on seed activity of Dichondra repens accessions from sichuan provence which could be fructification were conducted, and the results showed significant different in seed activity between them. accession SD200301 and SD200302 had the highest value of seed vitality index, and the germination rate could reach over 50% without any treatment which hope to seed produce in the future to base on the study of generative propagation of Dichondra repens.
引文
[1] 施立明.遗传多样性及其保存[J].生物科学信息.1990,2(4):159~164.
    [2] 解新明,云锦凤.植物遗传多样性及其检测方法[J].中国草地.2000,6:51~59.
    [3] 陈灵芝,马克平.生物多样性科学:原理与实践[M].上海:上海科学出版社,2001,8.
    [4] 夏铭.遗传多样性研究进展[J].生态学杂志.1999,18(3):59~65.
    [5] 刘建秀,郭爱桂,郭海林.我国狗牙根种质资源形态变异及形态类型划分[J].草业学报.2003,12(6):99~104.
    [6] Bouton J. H. Plant breeding characteristics relating to improvement of centipedegrass[J]. Soil and Crop Science Society of Florida Proceedings. 1983, 42: 53~58.
    [7] 白史且,苟文龙,张新全等.不同居群假俭草叶片比较解剖学的研究[J].北京林业大学学报,2003,25(2):36~40.
    [8] Wofford D. S. et al. Heritability Estimates for Turfgrass Characteristics in Bermudagrass [J]. Crop Sci.. 1985, 25: 133~136.
    [9] 周自玮,奎嘉祥.云南野生鸭茅的核型分析[J].草业科学,2000,17(6):48~51.
    [10] 张新全,杜逸.鸭茅二倍体和四倍体PMC减数分裂、花粉育性及结实性的研究[J].中国草地,1996,6:38~40。
    [11] 刘学诗,邓新义.假俭草[Eremochloa ophiuroides(Munro)Hack.]种质资源研究进展[J].安徽农业科学.2004,32(5):1007~1008,1020.
    [12] 郭海林,刘建秀.中国狗牙根染色体数变异研究初报[J].草地学报.2002,10(1):69~73.
    [13] Heidenreich, Kruse S. C., Borstel M., et al. Verification of perennial ryegrass blends (Lolium perenne L.) comparison of growing tests and bulk seed storage protein electrophoresis[J]. Plant Varieties & Seeds, 2000, 13(1): 61~66.
    [14] Steiner A. M., Heidenreich S. C., Schwarz P. Verification of varieties of alpine meadow-grass (Poa alpina L.) floret morphology, chromosome number and single seed storage protein electrophoresis[J]. Plant Varieties & Seeds, 1997, 10: 2, 129~134.
    [15] Wilson B. L., Kitzmiller J., Rolle W., et al. Isozyme variation and its environmental correlates in Elymus glaucus from the California Floristic province[J]. Canadian Journal of Botany. 2001, 79(2): 139~153.
    [16] 孙振雷,侯俊伟,刘海学等.几种冷地型草坪草POD同工酶分析[J].哲里木畜牧学院学报. 1999.4:6~10.
    [17] 马啸,张新全,刘伟.分子标记在高羊茅研究中的应用[C].四川草原论文汇编.2004:65~70.
    [18] 钱韦等,葛颂.居群遗传结构研究中显性标记数据方法初探[J].遗传学报.2001,28(3):244~255.
    [19] 张富民,葛颂.群体遗传学研究中的数据处理方法I.RAPD数据的AMOVA分析[J].生物多样性.2002,10(4):438~444.
    [20] 李亚,佟海英.中华结缕草遗传分化的RAPD分析[J].广西植物.2004,24(4):345~349,366.
    [21] Charmet G. Phylogenetic analysis in the Festuca-Lolium complex using molecular markers and its rDNA[J]. Theor Appl Genet. 1997, 94 (8): 1038~1046.
    [22] Stammers M. et al. Use of random PCR (RAPD) technology to analyze phylogenetic relationships in the Lolium/Festuca complex[J]. Herdity. 1995, 74(1): 19~27.
    [23] 潘莹,赵桂仿.分子水平的遗传多样性及其测量方法[J].西北植物学报.1998,18(4):645~653.
    [24] Yaneshita M., Nagasawa R., Engelke M. C. Genetic variation and interspecific hybridization among natural populations of zoysiagrasses detected by RFLP an alyses of chloroplast and nuclear DNA[J]. Genes and Genetic sys. 1997, 72(4): 173~179.
    [25] 苟文龙,高荣,沈翼假俭草遗传多样性的AFLP指纹分析[J].高技术通讯.2002,12(10):45~49.
    [26] Roldan-Ruiz 1., Dendauw J., Van Bockstaele E., et al. AFLP markers reveal high polymorphic rates in ryegrasses (Lolium spp.) [J]. Molecular Breed. 2000, 6: 125~134.
    [27] Kubik C., Meyer W.A., Gaut B. S. Assessing the abundance and polymorphism of simple sequence repeats in Perennial Ryegrass[J]. Crop sci. 1999, 39: 1136~1141.
    [28] Wu K. S., Tanskley S. D. Abundance polymorphism and genetic mapping of microsatellites in rice[J]. Mol Gen Genet. 1993, 241: 225~235
    [29] Sanchez de la, Hoz M. P., Davila J. A., Loarce Y., et al. Simple sequence repeat primers used in polymerase chain reaction amplification to study genetic diversity in barley[J]. Genome, 1996, 39: 112~117.
    [30] 尚海英,郑有良,魏育明,等.应用RAMP标记研究黑麦属遗传多样性.农业生物技术学报,2003,11(6):566~571.
    [31] Arencibia A D, armona E R, Comide M T, et al. Somaclonal variation in insect-resistant transgenic sugarcane (Saccharum hybrid) plants produced by cell electroporation[J]. Transgenic Res, 1999, 8: 349~360.
    [32] Sala F, Arencibia A, Castiglione S, et al. Somaclonal variation in transgenic plants. Acta Horticulturae, 2000, 530, 411~419.
    [33] Cheng H Y, Yang W C, Hsiao J Y. Genetic diversity and relationship among peach cultivars based on random amplified microsatellite polymorphism (RAMP) [J]. Bot Bull Acad Sin. 2001, 42: 201~206.
    [34] 四川植物志编辑委员会.四川植物志(第4册)[M].成都:四川科技出版社.1988:345~437.
    [35] 谭继清,谭志坚.新编中国草坪与地被[M].重庆:重庆出版社.2000:46~49.
    [36] 中国科学院植物研究所主编.中国高等植物图鉴(第三册)[M].北京:科学出版社.1983:524.
    [37] Pereira J. A., Quintana R. D., Monge S. Diets of plains vizcacha, greater rhea and cattle in Argentina[J]. Journal of Range Management. 2003, 56(1): 13~20.
    [38] Swann I. F. Pastures on the traprock, sandstone and dry granite lands of the Warwick distric[J]. Queensland Agricultural Journal. 1982, 108(2): 50~56.
    [39] Welman W. G. Convolvulaceae: notes on Dichondra and Xenostegia in Southern Africa [J]. Bothalia. 1999, 29(2): 253~254.
    [40] 刘光明,彭友林,宋泽运.马蹄金的形态组织鉴定[J].常德师范学院学报(自科版).2001,13(1):76~77,73.
    [41] 谢彩云,尚以顺.优良草坪植物马蹄金的生物学特性及栽培管理技术[J].贵州农业科学.2001,29(1):51~52.
    [42] 邓菊芬,黄必志.马蹄金草坪的建植与养护技术[J].草原与草坪.2000,1:41~42.
    [43] Groth D. Morphological characterization of seeds and fruits of eight weed species of the Convolvulaceae family[J]. Revista Brasileira de Sementes. 1997, 19(2,): 362~369.
    [44] Groth D. Morphological characterization of Convolvulaceae Juss. weed seed species[J]. Revista Brasileira de Sementes. 2001, 23(2): 1~1.
    [45] Forde M. B. The cultivated dichondra[J]. New Zealand Journal of Botany. 1978, 16(2): 283~285.
    [46] 萧运峰,高洁.草坪植物—马蹄金的研究[J].四川草原.1997,(4):43~46.
    [47] 田志宏,严寒,许本波等.马蹄金下胚轴离培养与植株再生[J].湖北农学院学报.2002,22(6):497~500.
    [48] 王昆蕾,干友民,费凌等.西南区野生马蹄金居群生态特性及形态变异[J].湖北农业科学.2006,45(6):795~798.
    [49] 王义彰,吴晓东,周守标.马蹄金与匍茎翦股颖光合生理生态的比较研究[J].草业学报.1994,(4):1~6.
    [50] 陈忠仁,陈恒彬.药用观赏草坪植物—马蹄金[J].亚热带植物通讯.1993,22(2):30~33.
    [51] 吴晓东,姜春前,周守标等.马蹄金的光合生理特性及调控研究[J].草业学报.1997,6(1):78~79.
    [52] 萧运峰,高洁。草坪植物—马蹄金的研究[J].四川草原.1997,(4):43~46.
    [53] 谭继清.中国草坪与地被[M].北京:科学技术文献出版社.1993.
    [54] Clarkson N. M., Lee G. R. Effects of grazing and severe drought on a native pasture in the traprock region of southern Queensland[J]. Tropical-Grasslands. 1988, 22(4): 176~183.
    [55] Takatsuki S. Ecological studies on effect of Sika deer (Cervus nippon) on vegetation. V. Nozakiisland, the Goto islands, northwestern Kyushu[J]. Ecological Review. 1984, 20(3): 223~235.
    [56] 竹内安智,刘大军译.草坪草的生理生态学特征和生育生理[J].四川草原,1997(1):59~63.
    [57] 刘爱荣,张远兵,张雪平等.几种暖季型草坪返青期生长状况的调查[J].安徽农业科学.2001,29(6):775~776,783.
    [58] 杨建华,徐洪亮,赵道奎等.优良草坪品种在武汉地区引种观察[J].草原与草坪.2002,(3):46~48.
    [59] 王玲,李轩,张再永.公路边坡水土保持草种引种试验研究[J].湖南林业科技.2001,28(2):35~38.
    [60] 徐敏,张江里.地被植物马蹄金在昆明的栽培应用[J].云南农业科技.2003,(1):22~23.
    [61] 古长标,郭成宝.南京地区马蹄金草坪草的引种与利用[J].江苏农业科学.2000,(2):58~59.
    [62] 周守标,朱胜东,王义彰.马蹄金光合特性及有性繁殖的初步研究[J].安徽师大学报.1996,19(1):36~41.
    [63] 王义彰,吴晓东,周守标等.马蹄金与匍茎翦股颖光合生理生态的比较研究[J].草业学报.1994,3(4):1~6.
    [64] 吴晓东,姜春前,周守标等.马蹄金的光合生理特性及调控研究(简报)[J].草业学报.1997,6(1):78~79
    [65] 周守标,朱胜东,王义彰.马蹄金光合特性及有性繁殖的初步研究[J].安徽师大学报(自科版).1996,19(1):36~41
    [66] 邓菊芬,黄必志.马蹄金草坪的建植与养护技术[J].草原与草坪.2000,(1):41~42
    [67] 张文惠,呼天明.低温胁迫对马蹄金抗性生理生化指标的影响[J].吉林农业大学学报. 2002,24(5):39~41.
    [68] 张文惠,呼天明.暖季型草坪草马蹄金冬季枯黄原因及延长绿期的对策[J].中国草地.2003,25(1):69~72,78.
    [69] 朱胜东,李素娟,周守标.PP333对草坪草马蹄金形态及某些生理特性的影响[J].草业科学.2003,20(1):56~58.
    [70] 严巍,倪桂菊,陈培昶.马蹄金白绢病的防治研究[J].森林病虫通讯.1999,18(1):26~27.
    [71] 黄普乐,吕江江,张崎等.马蹄金草坪主要病虫害及防治措施[J].浙江农业科学.2002,(3):139~141.
    [72] 马惠民,沈龙元,张建明.不同药剂防治马蹄金白卷病效果初报[J].上海农业科技.2000,(4):59~59.
    [73] Frisullo S., Braun U. Etiology of some leaf spot diseases on Dichondra repens[J]. Phytopathologia Mediterranea. 1996, 35(3): 137~143.
    [74] Wolcan S., Perello A. Alternaria dichondrae Gambogi, Vannacci & Triolo, causal agent of blight of Dichondra repens Forst in Argentina. Revista de la Facultad de Agronomia[J]. Universidad Nacional de La Plata. 1985, 61: 1-2.
    [75] Menezes M., Lima J. A. A. Finding of Sclerotium wilt and Meloidogyne infection in Dichondra repens in Ceara[J]. Fitossanidade. 1974, 1 (1): 18~19.
    [76] Gombogi P. Vannacci-G., Triolo E. Blight of Dichondra repens caused by Alternaria dichondrae[J]. Transactions of the British Mycological Society. 1975, 65(2): 322~328.
    [77] Laundon G. New plant disease record in New Zealand Alternaria dichondrae on Dichondra repens[J]. New Zealand Journal of Agricultural Research. 1979, 22(4): 647~648.
    [78] Anderson F., Delhey R. Leaf-spot diseases on Dichondra spp. (Convolvulaceae) [J]. Revista de la Facultad de Agronomia La Plata. 2001, 104(1): 61~66.
    [79] Anderson F., Delhey R., Braun U. A new species of Phaeoramularia (Hyphomycetes) causing leaf spots on Dichondra sp. (Convolvulaceae) [J]. Mycotaxon. 1998, 67: 489~494.
    [80] Crous P. W., Braun U. Cercospora species and similar fungi of South Africa[J]. Mycological Research. 1995, 99: 1, 31~36.
    [81] Sivapalan A., Pascoe I. G. Leaf blight of Dichondra repens in Australia caused by Alternaria dichondrae[J]. Australasian Plant Pathology. 1994, 23(1): 8~10.
    [82] Thompson J. The effect of neburon on weed control in dichondra[J]. Proceedings of the 30th Anniversary California Weed Conference. 1978: 32~33.
    [83] Harrington K. C., Hartley M. J., Rahman A. et al. Strategies for controlling weeds in New Zealand apple orchards[J]. 13th Australian Weeds Conference. 2002: 208~211.
    [84] 孙国俊,吴志华.马蹄金草坪不同杂草的化学防治技术研究[J].中国草地.2000,(2):3~55.
    [85] 杨建华,杨刚,徐洪亮.暖季型草坪杂草化学防治策略研究[J].草原与草坪.2000,(3):46~48.
    [86] EdminsterJ. Weed control for the homeowner[J]. Proceedings 29th Annual California Weed Conference. 1977: 134~136.
    [87] Patterson T. M. The control of Onehunga weed with bromofenoxim[J]. Proceedings of the 31st New Zealand Weed and Pest Control Conference.. 1978: 195~197.
    [88] Nishimoto R. K., Rauch F. D., Parvin P. E. Evaluation Of preemergence herbicides for weed control in ground covers in Hawaii[J]. Research Report, Hawaii Agricultural Experiment Station. 1977: 12.
    [89] Williams H. H. Effects of certain preemergence herbicides on Dichondra spp.[J]. Proceedings of the 2nd International Turfgrass Research Conference. 1974: 410~417.
    [90] 沈国辉,杨烈,钱振官.马蹄金草坪苗后阔叶杂草防除技术研究[J].上海农业学报.2002,18(2):62~65.
    [91] Harrington K. C., Rahman A. Tolerance to herbicides of ground cover species for New Zealand orchards[J]. Plant Protection Quarterly. 1998, 13(3): 111~116.
    [92] Mantinger H., Gasser H. Persistence of sowings in orchard strips[J]. Obstbau Weinbau. 1987, 24(6): 186~187.
    [93] Hartley M. J., Rahman A., Harrington K. C. et al. Assessing ground covers in a newly planted apple orchard[J]. New Zealand Plant Protection, 2000, 53: 22~27.
    [94] 王昆蕾,干友民,马啸等.马蹄金ISSR反应体系的正交优化[J].分子植物育种.2006,4(6):866~870.
    [95] 刘明秀.马蹄金总DNA的快速提取[J].四川农业大学学报.2004,22(4):389~394.
    [96] 胡志昂.杨属植物的同工过氧化物酶[J].植物分类学报,1981,19(3):291~297.
    [97] 金燕,卢宝荣.遗传多样性的取样策略[J].生物多样性.2003,11(2):155~156.
    [98] 李君,周守标,黄文江.马蹄金野生种与栽培种在自然降温过程中的抗寒性研究[J].草业科学,2005,22(6):105~107.
    [99] Welsh J., Mclenland M. Fingerprinting Genome Using PCR with Arbitrary Primers[J]. Nucl. Aceds Res. 1990, 18(24): 7213~7218.
    [100] 王关林,方宏筠.植物基因工程(第二版)[M].北京:科学出版社.742~744.
    [101] Wachira, F. N., Waugh, R., Hackett, C. A., Powell, W. Detection of genetic diversity in tea(Camellia sinensis)using RAPD Makers[J]. Genome. 1995, 38: 201~210.
    [102] Persson, K., Diaz, O., von Bothmer, R. Exten and patterns of RAPD variation in landraces and cultivars of rye(Secale cereate L.)from Northern Europe[J]. Hereditas. 2001, 134(3): 237-243.
    [103] Nei M. Analysis of gene diversity in subdivided groups[J]. Procnat acad sci USA. 1973, 70: 3321~3323.
    [104] 刘玉明,梁光义,张建新等.马蹄金化学成分的研究[J].中国药学杂志.2002,37(8):577-579.
    [105] 席嘉宾,郑玉忠,杨中艺.地毯草ISSR反应体系的建立与优化[J].中山大学学报(自然科学版),2004,43(3):80~84.
    [106] 周延清,景建洲,李振勇等.利用RAPD和ISSR分子标记分析地黄种质遗传多样性[J].遗传,2002,24(6):922~928.
    [107] 张利.仲彬草属植物的细胞学和分子系统学研究.[学位论文].成都,四川大学,2004.
    [108] 刘祖洞.遗传学(下)[M].北京:高等教育出版社,1991:338.
    [109] 葛颂.同工酶和植物进化生物学研究[M].武汉:武汉大学出版社,1994:153~208.
    [110] 张吉宇.胡枝子属14个野生居群遗传多样性研究.[学位论文].兰州,甘肃农业大学,2003.
    [111] 孙建萍.披碱草属野生种质资源遗传多样性研究.[学位论文].北京,中国农业科学院,2005.
    [112] 彭云滔.野生罗汉果遗传多样性的ISSR和RAPD分析.[学位论文].桂林,广西师范大学,2005.
    [113] HE Hua-Qin, JIA Xiao-Li, LIANG Yi-Yuan, et. al. Assesment of Genetic Diversity of All elopathic Rice Germplasm Based on RAPD and ISSR[J]. September. Acta Genetica Sinica. 2004, 31(9): 888-894.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700