用户名: 密码: 验证码:
赖氨酸席夫碱对进入绵羊小肠养分流量及瘤胃消化代谢的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文研究了赖氨酸席夫碱的体外抑菌活性,添喂赖氨酸、赖氨酸席夫碱对到达绵羊小肠蛋白和游离氨基酸流量及对绵羊瘤胃消化代谢的影响。
     采用赖氨酸和水杨醛合成了赖氨酸席夫碱,并运用倍比稀释法进行大肠杆菌、金黄色葡萄球菌和沙门氏杆菌的最小抑菌活性试验,同时根据以上试验测定了在3倍最小抑菌浓度时的抑菌曲线,结果表明,赖氨酸席夫碱对上述试验菌的最小抑菌浓度分别为786.4、1228.8和983μg/mL,3倍最小抑菌曲线显示在4h后对各试验菌的抑菌活性趋于相近。
     选用4只体重在40kg左右,安装永久性十二指肠瘘管的中国美利奴(新疆型)细毛羊,采用拉丁方设计,分别添加3.42g和6.84g赖氨酸席夫碱(分别含赖氨酸为2g、4g)、2.56g和5.12g赖氨酸盐酸盐作为对照(分别含赖氨酸为2g、4g),以研究对进入绵羊小肠蛋白和游离氨基酸的流量。结果表明,在赖氨酸实际添加水平都为4g/d时,赖氨酸席夫碱使绵羊小肠液中游离Lys、Glu和Tyr的流量分别提高了25.17%、38.35%和33.88%(P<0.05),对其他游离氨基酸流量的影响不明显;添加赖氨酸席夫碱不影响绵羊的粗蛋白采食量、瘤胃微生物蛋白的合成和进入小肠的瘤胃非降解蛋白
     选用4只体重在40kg左右,安装永久性十二指肠瘘管的中国美利奴(新疆型)细毛羊,采用拉丁方设计,分别添加3.42g和6.84g赖氨酸席夫碱(分别含赖氨酸为2g、4g)、2.56g和5.12g赖氨酸盐酸盐作为对照(分别含赖氨酸为2g、4g),以研究对绵羊瘤胃消化代谢的影响。结果显示,添加6.84g赖氨酸席夫碱时绵羊瘤胃液乙酸含量降低了9.44%(P<0.05),随添加量由3.42g增加至6.84g时,丁酸含量增加了10.64%(P<0.05)。试验各组绵羊的平均采食量、瘤胃pH值、NH3-N含量和瘤胃原虫数量分别为1374.21~1419.01g/d、6.28~6.40、16.44~18.31mg/100mL、86.31×10~4~89.92×10~4,各组间差异不显著;对瘤胃内干物质、有机物、粗纤维和纤维素的表观消化率无显著影响。
     本文研究表明,添喂6.84g赖氨酸席夫碱(含赖氨酸4g)可显著提高每日到达绵羊小肠游离Lys、Glu和Tyr的流量,同时具有降低瘤胃液中的乙酸含量和总挥发性脂肪酸浓度的作用。
The in vitro antibacterial activity of the Schiff’s base of lysine, the effects of supplementing lysine and Schiff’s base of lysine were studied on flow of protein, liquid free amino acids to the small intestine and rumen digestion and metabolism.
     The Schiff’s base of lysine was synthesized by lysine and salicylaldehyde. The minimum inhibiting concentration against E.coli,D. aureds and Salmonella were determined by concentration dilution method. Bactericidal curve was made by three times MIC of Schiff bases of lysine. The results showed that the minimum inhibiting concentration were 786.4, 1228.8 and 983μg/mL, respectively. Antibacterial activity of three times MIC tended to be similar after 4h.
     Four male China merino(Xinjiang type) fitted with ruminal and duodenal cannulae were used in a 4×4 Latin square design trial to study the effect of supplemental Schiff’s base of lysine 3.42g/d, 6.84g/d(the content of lysine is 2g and 4g respectively) and L-lysine-HCL 2.56g , 5.12g/d(the content of lysine is 2g and 4g respectively) on the flow of protein and liquid free amino acids to the small intestine. The results indicated that 6.84g/sheep/d Schiff’s base of lysine equal to 4g free lysine increased flow of Lys, Glu and Tyr to the small intestine by 25.17%, 38.35% and 33.88%(P<0.05) respectively. Flows of other free amino acids to the small intestine were not affected by supplementing with Schiff’s base of lysine. Supplementing Schiff’s base of lysine did not affect crude protein intake, microbial protein synthesis and flow of rumen undegradable protein to the small intestine.
     Four male China merino (Xinjiang type) fitted with ruminal and duodenal cannulae were used in a 4×4 Latin square design to study the effect of supplementing Schiff’s base of lysine 3.42g/d and 6.84g/d (the content of lysine is 2g and 4g respectively) and L-lysine-HCL 2.56g and 5.12g/d(the content of lysine is 2g and 4g respectively) on rumen digestion and metabolism. The results showed that Schiff’s base of lysine with 4g lysine decreased the concentration of the total volatile fatty acids and acetic acid by 7.24% and 9.44% (P<0.05), respectively. The average concentration of butyric acid increased 10.64% (P<0.05) with supplementing Schiff’s base of lysine from 3.42g/sheep/d to 6.84g/sheep/d. The average dry matter intake , pH, concentration of NH3-N and rumen protozoa in the rumen were 1374.21~1419.01g/d, 6.28~6.40, 16.44 mg/100ml~18.31 mg/100ml and 86.31×10~4~89.91×10~4 respectively, with no significant difference among groups. Rumen apparent digestibility of dry matter, organic matter, cellulose and hemicellulose were not affected by supplementing Schiff’s base of lysine.
     It was concluded that 6.84g of Schiff’s base of lysine increased the flow of Lys, Glu and Tyr to the small intestine, and reduced concentrations of acetic acid and total volatile fatty acids in rumen.
引文
[1] 毕思玮,刘树祥. 氨基酸水杨醛席夫碱与铜(Ⅱ)配合物的合成及其抗菌活性和稳定性、结构间的关系. 无机化学学报.1996.12(4):423-426.
    [2] 丁明玉, 陈培榕, 罗国安. 食品中有机酸的高效液相色谱分析法. 色谱.1997.15(3):212-215.
    [3] 董晓玲. 内蒙古白绒山羊限制性必需氨基酸的研究.[硕士学位论文].呼和浩特:内蒙古农业大学.2003.
    [4] 段红伟. N-羟甲基蛋氨酸钙的过瘤胃效果及其对瘤胃环境和饲料养分的消化.[硕士学位论文].兰州:甘肃农业大学.2000.
    [5] 冯仰廉. 反刍动物营养学. 北京:中国农业出版社.2004. 234.
    [6] 傅启高,雒秋江. 用邻-甲酚酞比色法测定饲料中钙含量的研究. 动物营养学报.1996.8(3):25-30.
    [7] 韩兴泰,胡令浩,谢敖云,等. 牦牛瘤胃细菌中核糖核酸含量及其对细菌总氮比值的研究. 动物营养学报,1998,10(2):35-39.
    [8] 韩兆玉, 周岩民, 王根林,等. 过瘤胃蛋氨酸对奶牛产奶量, 乳成分以及血液氨基酸的影响. 南京农业大学学报.2006.29(3):54-58.
    [9] 韩正康,陈杰. 反刍动物瘤胃的消化和代谢. 北京:科学出版社.1988
    [10] 怀明燕. 2-羟基-4-甲硫基丁酸 (HMB) 的研究进展. 国外畜牧学: 猪与禽.2003.(6):21-24.
    [11] 黄永民 , 冯仰婕 , 鲍景旦 . 体外发酵法测定过瘤胃氨基酸瘤胃降解率的研究 . 饲料研究.1998(12):4-5.
    [12] 姜淑贞.肉牛十二指肠蛋氨酸灌注及过瘤胃蛋氨酸代谢规律的研究.[硕士学位论文].泰安:山东农业大学.2004.
    [13] 姜淑贞,杨在宾,杨维仁. 半体内法研究 DL-蛋氨酸和过瘤胃蛋氨酸的稳定性. 中国畜牧杂志.2004.40(5):17-19.
    [14] 李富棣,胡正嘉. 微生物学(第五版). 北京:中国农业出版社,2000:25.
    [15] 李力. 用血清游离氨基酸测定法评价过瘤胃氨基酸的功效. 饲料研究.2001.(6):27-28.
    [16] 卢德勋. 反刍动物营养调控理论及其应用. 内蒙古畜牧科学特刊.1993:41-45.
    [17] 卢德勋,谢崇文. 现代反刍动物营养研究方法和计数. 北京:农业出版社.1999.
    [18] 麻益良,李敬,王平书,等 . N-羟甲基 -DL- 蛋氨酸钙在反刍动物中的应用 . 中国饲料.2002(5):19-21.
    [19] 毛成文.包被蛋氨酸和赖氨酸对肉羊氮代谢和生产性能影响研究.[硕士学位论文].北京:中国农业大学.2004.
    [20] 美国国家科学研究委员会. 奶牛营养需要. 第 7 次修订版版. 孟庆翔主译. 北京:中国农业大学出版社.2002. 57-58.
    [21] 斯钦. 包被蛋氨酸添加剂及补饲效果的研究.[硕士学位论文].呼和浩特:内蒙古农牧学院.1993.
    [22] 斯钦. 过瘤胃蛋氨酸添加剂对绵羊补饲效果的研究. 饲料研究.1995(4):4-5.
    [23] 斯钦. 过瘤胃蛋氨酸添加剂的研究. 中国饲料.1996.7:8-10.
    [24] 孙国强,王世成,吕永艳. 精料中添加金属蛋氨酸络合物对奶牛产奶量影响的研究. 中国奶牛.2002(6):15-16.
    [25] 孙海霞,李长胜,刘春龙,等. 过瘤胃氨基酸对奶牛生产性能影响的研究. 黑龙江畜牧兽医.2003.(11):22-22.
    [26] 孙海霞,石宝明. 微量元素-氨基酸螯合物在动物生产中的研究与应用功效. 河北农业大学学报.2003.(S1).
    [27] 王洪荣. 反刍动物氨基酸营养的特点及研究进展. 2004. 467-471.
    [28] 王 洪 荣 , 卢 德 勋 . 饲 喂 玉 米 型 日 粮 的 生 长 绵 羊 限 制 性 氨 基 酸 研 究 . 动 物 营 养 学报.1999.11(4):17-28.
    [29] 王洪荣,卢德勋,张海鹰,等. 饲喂豆饼, 亚麻饼和血粉氮源日粮的生长绵羊限制性氨基酸研究. 动物营养学报.1999.11(增刊):106-121.
    [30] 王 洪 荣 , 邵 凯 . 蛋 氨 酸 锌 螯 合 物 在 绵 羊 体 内 消 化 代 谢 规 律 的 研 究 . 畜 牧 兽 医 学报.1998.29(4):322-331.
    [31] 王纪亭,万文菊,李松建. 保护性蛋氨酸对奶牛生产的试验. 中国畜牧杂志.2003.39(4):27-28.
    [32] 王建华.瘤胃保护性氨基酸的研制及其对内蒙古白绒山羊消化代谢影响的研究.[硕士学位论文].呼和浩特:内蒙古农业大学.2004.
    [33] 王建华,王洪荣. 瘤胃保护性氨基酸(RPAA)的研究进展. 饲料广角.2003(19):24-27.
    [34] 王运亨,张振山. 奶牛日粮添加保护性蛋氨酸试验. 中国奶牛.1999(3):26-27.
    [35] 魏 宏 阳 , 王 加 启 . 不 同 饲 养 水 平 下 灌 注 氨 基 酸 对 阉 牛 氮 代 谢 的 影 响 . 畜 牧 兽 医 学报.2003.34(2):112-119.
    [36] 谢实勇. 不同形式蛋氨酸对绒山羊消化代谢及生产性能影响研究.[硕士学位论文].北京:中国农业大学.2002.
    [37] 谢实勇, 贾志海, 范俊英. 瘤胃保护性蛋氨酸稳定性检验研究. 当代畜牧.2003(5):31-32.
    [38] 徐元年,张幸开,袁耀明,等. 过瘤胃赖氨酸和过瘤胃蛋氨酸对泌乳早期奶牛生产性能影响的研究. 乳业科学与技术.2007(1):43-45.
    [39] 杨菁,孙黎光,白秀珍,等. 异硫氰酸酯柱前衍生化反相高效液相色谱法同时测定 18 种氨基酸.色谱.2002.20(4):369-371.
    [40] 杨胜. 饲料分析及饲料质量检测技术. 第二版版. 北京:中国农业出版社.1993.
    [41] 杨扬,秦强,郭伟忠. 苯基异硫氰酸酯衍生氨基酸的高效液相色谱分析.色谱.1994.12(4):295-296.
    [42] 杨维仁. 瘤胃保护性氨基酸对肉牛消化代谢影响及适宜供给量的研究.[博士学位论文].北京:中国农业大学.2004.
    [43] 袁书林,经荣斌. 微量元素氨基酸螯合物的研究与应用. 粮食与饲料工业.2003(3):28-30.
    [44] 张嘉麟,孙继英,徐文安. 高效液相色谱法-PITC 衍生法的血浆游离氨基酸分析. 昆明医学院学报.1994(15):28-33.
    [45] 张军民. 过瘤胃蛋白质和保护性氨基酸. 中国饲料.2001(4):12-13.
    [46] 赵建军,赵旭昌,王哲,等. 高效液相色谱法测定瘤胃内容物挥发性脂肪酸和乳酸. 兽医大学学报.1993.13(4):393-394.
    [47] 赵景婵,郭治安,常建华,等. 有机酸类化合物的反相高效液相色谱法的分离条件研究. 色谱.2001.19(3):260-263.
    [48] 周丽霞,张力,梁剑萍,等. 应用均匀设计研究过瘤胃蛋氨酸合成工艺. 饲料研究.1999(8):30.
    [49] AFRC. Energy and protein requirements of ruminants. 1993: CAB Internatinal.
    [50] Archibeque S L, Burns J C, Huntington G B. Nitrogen metabolism of beef steers fed endophyte-free tall fescue hay: effects of ruminally protected methionine supplementation. J Anim Sci. 2002.80(5):1344.
    [51] Bassett J W, Baldwin B C, Calhoun M C, et al. Plasma methionine and mohair response to dietary rumen-protected methionine in Angora goats. Texas Agric. Exp. Sta. PR. 1981.39(4):68-73.
    [52] Bateman H D, Spain J N, Kerley M S. Evaluation of ruminally protected methionine and lysine or blood meal and fishmeal as protein sources for lactating Holsteins. J Dairy Sci. 1999.82(8):2115-2120.
    [53] Belasco I J. Fate of carbon-14 labeled methionine hydroxy analog and methionine in the lactating dairy cow. J. Dairy Sci. 1980.63:775-784.
    [54] Bernard J K, Chandler P T, West J W, et al. Effect of supplemental L-lysine-HCL and corn source onrumen fermentation and amino acid flow to the small intestine. J Dairy Sci. 2004.87(2):399-405.
    [55] Berthiaume R, Dubreuil P, Stevenson M, et al. Intestinal disappearance and mesenteric and portal appearance of amino acids in fairy cows fed ruminally protected methionine. J Dairy Sci. 2001.84(1):194-203.
    [56] Berthiaume R, Lapierre H, Stevenson M, et al. Comparison of the In Situ and In Vivo Intestinal Disappearance of Ruminally Protected Methionine. J Dairy Sci. 2000.83(9):2049-2056.
    [57] Bickel H, Landis J. Present situation of protein evaluation for ruminants in Switzerland. Feed evaluation and protein requirement systems for ruminants, Commission of the European Communities, Brussels. 1987:41-46.
    [58] Blum J W, Bruckmaier R M, Jans F. Rumen-Protected Methionine Fed to Dairy Cows: Bioavailability and Effects on Plasma Amino Acid Pattern and Plasma Metabolite and Insulin Concentrations. J Dairy Sci. 1999.82(9):1991-1998.
    [59] Burroughs W, Trenkle A H, Vetter R L. Some new concepts of protein nutrition of feedlot cattle.(Metabolizable protein or metabolizable amino acids). Vet Med Small Anim Clin. 1971.66(3):238-244.
    [60] Buttery P J, Folds A N. Amino acid requirements of ruminants. Recent Advances in Animal Nutrition. 1985:257-271.
    [61] Campbell C G, Titgemeyer E C, Cochran R C, et al. Free amino acid supplementation to steers: effects on ruminal fermentation and performance. J Anim Sci. 1997.75(4):1167-1178.
    [62] Canale C J, Muller L D, Mecahon H A, et al. Dietary fat and ruminally protected amino acids for high producing dairy cows. J Dairy Sci. 1990.73(1):135-141.
    [63] Cecava M J, Merchen N R, Berger L L, et al. Intestinal supply of amino acids in sheep fed alkaline hydrogen peroxide-treated wheat straw-based diets supplemented with soybean meal or combinations of corn gluten meal and blood meal. J Anim Sci. 1990.68(2):467-477.
    [64] Chalupa W. Degradation of amino acids by the mixed rumen microbial population. J Anim Sci. 1976.43(4):828-34.
    [65] Chapoutot P, Schmidely P, Sauvant D, et al. Influence of a ruminally protected blend of methionine and lysine (ML) on the dairy cow nutrition and production. J. Dairy Sci. 1992.75(Suppl 1):199.
    [66] Chen G, Russell J B. More monensin-sensitive, ammonia-producing bacteria from the rumen. ApplEnviron Microbiol. 1989.55(5):1052-1057.
    [67] Chung Y H, Bateman H G, Williams C C, et al. Effects of methionine and lysine on fermentation in vitro and in vivo, nutrient flow to the intestine, and milk production 1. J Dairy Sci. 2006.89(5):1613-1620.
    [68] Clark J H, Klusmeyer T H, Cameron M R. Microbial protein synthesis and flows of nitrogen fractions to the duodenum of dairy cows. J Dairy Sci. 1992.75(8):2304-2323.
    [69] Cottle D J, Velle W. Degradation and outflow of amino acids from the rumen of sheep. Br. J. Nutr. 1989.61:397-408.
    [70] Dehority B A, Orpin C G. Development of , and natural fluctuations in, rumen microbial populations. In:Hobson P N and Stewart C S, ed. The Rumen Microbial Ecosystem. London: Blackie Academic and Professional, 196-245.
    [71] Dinn N E, Shelford J A, Fisher L J. Use of the cornell net carbohydrate and protein system and rumen-protected lysine and methionine to reduce nitrogen excretion from lactating dairy cows. J Dairy Sci. 1998.81(1):229-237.
    [72] Erasmus L J, Botha P M, Meissner H H. Effect of protein source on ruminal fermentation and passage of amino acids to the small intestine of lactating cows. J Dairy Sci. 1994.77(12):3655-3665.
    [73] Ferreira A V, Merwe H J, Slippers S C. Spectrophotometric determination of maleyl-DL-methionine hydrolysis. Small Ruminant Research. 1996.22(1):79-83.
    [74] Finot P A, Magnenat E, Mottu F, et al. Biologic availability and metabolic transit of amino acids modified by technological processing. Ann Nutr Aliment. 1978.32(2):326-338.
    [75] Finot P A, Mottu F, Bujard E, et al. N-Substituted lysines as sources of lysine in nutrition. Adv Exp Med Biol. 1978.105:549-570.
    [76] Fox D G, Barry M C, Pitt R E, et al. Application of the cornell net carbohydrate and protein model for cattle consuming forages. J Anim Sci. 1995.73(1):267-277.
    [77] Fraser D L, Фrskov, E R, Whitelaw F G, et al. Limiting amino acids in dairy cows given casein as the sole source of protein. Livest. Prod. Sci. 1991.28:235-252.
    [78] Friedman M, Gumbmann M R. Bioavailability of some lysine derivatives in mice. J Nutr. 1981.111(8):1362-1369.
    [79] Furst P, Pollack L, Graser T A. Appraisal of four pre-column derivatization methods for thehigh-performance liquid chromatographic determination of free amino acids in biological materials. J Chromatogr. 1990.49(9):557-569.
    [80] Galbraith H. Protein and sulphur amino acid nutrition of hair fibre-producing Angora and Cashmere goats. Livestock Production Science. 2000.64(1):81-93.
    [81] Greenwood R H, Titgemeyer E C. Limiting amino acids for growing Holstein steers limit-fed soybean hull-based diets. J Anim Sci. 2000.78(7):1997-2004.
    [82] Heinrichs A J, Conrad H R. Rumen solubility and breakdown of metal proteinate compounds. J. Dairy Sci. 1983.66:147.
    [83] Hess B W, Scholljegerdes E J, Coleman S A, et al. Supplemental protein plus ruminally protected methionine and lysine for primiparous beef cattle consuming annual rye hay. J Anim Sci. 1998.76(7):1767-1777.
    [84] Hino T, Russell J B. Effect of reducing-equivalent disposal and NADH/NAD on deamination of amino acids by intact rumen microorganisms and their cell extracts. Appl Environ Microbiol. 1985.50(6):1368-1374.
    [85] Hussein H S, Berger L L. Feedlot performance and carcass characteristics of Holstein steers as affected by source of dietary protein and level of ruminally protected lysine and methionine. J Anim Sci. 1995.73(12):3503-3509.
    [86] INRA, J. Ruminant nutrition: Recommended allowances and feed tables, INRA. 1989: John Libbey Eurotext, Paris, France.
    [87] Jouany J P, Ushida K. The role of protozoa in feed digestion. Asian-Australas. J. Anim. Sci. 1998(12):113–128.
    [88] Karunanandaa K, Goodling L E, Varga G A, et al. Supplemental dietary fat and ruminally protected amino acids for lactating jersey cows. J Dairy Sci. 1994.77(11):3417-3425.
    [89] Klemesrud M J, Klopfenstein T J, Stock R A, et al. Effect of dietary concentration of metabolizable lysine on finishing cattle performance. J Anim Sci. 2000.78(4):1060-1066.
    [90] Koch K L, Whitehouse N L, Garthwaite B D, et al. Production responses of lactating Holstein cows to rumen-stable forms of lysine and methionine. J Anim Sci. 1996.74(Suppl.1):97 (Abstr.).
    [91] Kopecny J, Wallace R J. Cellular location and some properties of proteolytic enzymes of rumen bacteria. Appl Environ Microbiol. 1982.43(5):1026-1033.
    [92] Leonardi C, Stevenson M, Armentano L E. Effect of two levels of crude protein and methionine supplementation on performance of dairy cows. J Dairy Sci. 2003.86(12):4033-4042.
    [93] Limin, K.J. and Lyle M.R. Amino acid metabolism in ruminants. Anim Feed Sci Technol. 1996.59:167-172.
    [94] Lynch G P, Elsasser T H, Jackson C, et al. Nitrogen metabolism of lactating ewes fed rumen-protected methionine and lysine. J Dairy Sci. 1991.74(7):2268-2276.
    [95] Mata G, Masters D G, Buscall D, et al. Responses in wool growth, liveweight, glutathione and amino acids, in Merino wethers fed increasing amounts of methionine protected from degradation in the rumen. Australian Journal of Agricultural Research. 1995.46(6):1189–1204.
    [96] Mbanzamihigo L, Vandycke E, Demeyer D I. Degradation of methionine by rumen contents in vitro and efficiency of its protection. Anim Feed Sci Technol. 1997.67(4):339-347.
    [97] McCollum M Q, Vazquez A M, Dibner J J, et al. Absorption of 2-hydroxy-4-(methylthio) butanoic acid by isolated sheep ruminal and omasal epithelia. J Anim Sci. 2000.78(4):1078-1083.
    [98] MMerchen N R, Titgemeyer E C. Manipulation of amino acid supply to the growing ruminant. J Anim Sci. 1992.70(10):3238-3247.
    [99] Misciattelli L, Kristensen V F, Vestergaard M, et al. Milk production, nutrient utilization, and endocrine responses to increased postruminal lysine and methionine supply in dairy cows. J Dairy Sci. 2003.86(1):275-286.
    [100] Nimrick K, Hatfield E E, Kaminski J, and Owens, F. N. Qualitative assessment of supplemental amino acid needs for growing lambs fed urea as the sole nitrogen source. Br J Nutr. 1970.100:1293-1300.
    [101] NRC. Nutrient Reguirement of Dairy Cattle(seventh Revised edition). 2001.Washington, D C: National Academy Press.
    [102] O'Connor J D, Sniffen C.J, Fox D G, et al. A net carbohydrate and protein system for evaluating cattle diets: IV. Predicting amino acid adequacy. J Anim Sci. 1993.71:1298-1311.
    [103] Ohsumi T, Sato H, Yoshihara Y, et al. selection and breeding of lysine-accumulating saccharomyces cerevisiae as a stable source of lysine in the rumen. Biosci. Biotechnol. Biochem.1994.58:1302-1305.
    [104] Oke B O, Loerch S C, Deetz L E. Effects of rumen-protected methionine and lysine on ruminant performance and nutrient metabolism. J Anim Sci. 1986.62(4):1101-1112.
    [105] Onodera R. Methionine and lysine metabolism in the rumen and the possible effects of their metabolites on the nutrition and physiology of ruminants. Amino Acids. 1993.5(2):217-232.
    [106] Overton T R, Emmert L S, Clark J H. Effects of source of carbohydrate and protein and rumen-protected methionine on performance of cows. J Dairy Sci. 1998.81(1):221-228.
    [107] Overton T R, Lacount D W, Cicela T M, et al. Evaluation of a ruminally protected methionine product for lactating dairy cows. J Dairy Sci. 1996.79(4):631-638.
    [108] Papas A M, Vicini J L, Clark J H, et al. Effect of rumen-protected methionine on plasma free amino acids and production by dairy cows. Br J Nutr. 1984.114(12):2221-2227.
    [109] Patterson J A, Kung Jr, L. Metabolism of DL-methionine and methionine analogs by rumen microorganisms. J Dairy Sci. 1988.71(12):3292-3301.
    [110] Preston T P, Leng R A. Manipulation of feeding and the rumen ecosystem. Anonymous. Matching ruminant production system with available resources in the tropics and Sub-tropics. 1987: Penambul books, Armidale, Australia.
    [111] Richardson C R, Hatfield E E. The limiting amino acids in growing cattle. J Anim Sci. 1978.46(3):740-745.
    [112] Robert J C, Sloan B K, Jouan N, et al. Influence of supplementation with protected methionine on the growth of heifers. J. Dairy Sci. 1999.82(Suppl 1):91.
    [113] Robert J C, Williams P E V. Influence of forage type on the intestinal availability of methionine from a rumen protected form. J. Dairy Sci. 1997.80(Suppl 1):248.
    [114] Robinson P H, Chalupa W, Sniffen C J, et al. Ruminally protected lysine or lysine and methionine for lactating dairy cows fed a ration designed to meet requirements for microbial and postruminal protein. J Dairy Sci. 1998.81(5):1364-1373.
    [115] Robinson P H, Depeters E J, Shinzato I, et al. Influence of feeding free lysine to early lactation dairy cows on ruminal lysine escape, rumen fermentation and productivity. Anim Feed Sci Technol. 2005.118(3/4):201-214.
    [116] Robinson P H. Modifying duodenal flow of amino acids by manipulation of dietary protein sources. Can. J. Anim. Sci. 1997.77:241-251.
    [117] Robinson P H, Fredeen A H, Chalupa W, et al. Ruminally protected lysine and methionine for lactating dairy cows fed a diet designed to meet requirements for microbial and postruminal protein. JDairy Sci. 1995.78(3):582-594.
    [118] Rodehutscord M, Young P, Phillips N, et al. Wool growth in Merino wethers fed lupins untreated or treated with heat or formaldehyde, with and without a supplementation of rumen protected methionine. Anim Feed Sci Technology. 1999.82(3):213-226.
    [119] Rohr K. Present situation of the modern protein systems:Germany. Feed evaluation and protein requirement systems for ruminants, Commission of the European Communities.1987.
    [120] Rulquin H, Pisulewski P. M, Verite R. Milk production and composition and a function of postruminanl lysine and methionine supply: A nutrient response approach. Livest. Prod. Sci. 1993.37:69.
    [121] Russel J B, O'Connor J D, Fox D G. A net carbohydrate and protein system for evaluating cattle diets: I. Ruminal fermentation. J Anim Sci. 1992.70(11):3551-3561.
    [122] Russell J B, Strobel H J, Chen G J. Enrichment and isolation of a ruminal bacterium with a very high specific activity of ammonia production. Appl and Environ Microbiol. 1988.54(4):872-877.
    [123] Santos K A, Stern M D, Satter L D. Protein degradation in the rumen and amino acid absorption in the small intestine of lactating dairy cattle fed various protein sources. J Anim Sci. 1984.58(1):244-255.
    [124] Satter L D. Protein supply from undegraded dietary protein. J Dairy Sci. 1986.69(10):2734-2749.
    [125] Schwab C G. Rumen-protected amino acids for dairy cattle:Progress towards determining lysine and methionine requirements. Anim Feed Sci Technology. 1996.59:87-101.
    [126] Schwab C G. Protected proteins and amino acids for ruminants. Biotechnology in Animal Feeds and Animal Feeding. 1995:115-141.
    [127] Schwab C G, Bozak C K, Whitehouse N L, et al. Amino acid limitation and flow to duodenum at four stages of lactation. 1. Sequence of lysine and methionine limitation. J Dairy Sci. 1992.75(12):3486-3502.
    [128] Sloan B K. Developments in amino acid nutrition of dairy cows. Recent Advances in Animal Nutrition. PC Garnsworthy and J. Wiseman, ed. Nottingham University Press, Nottingham, UK. 1997:167–198.
    [129] Sniffen C J, O'Connor J D, Van Soest P J, et al. A net carbohydrate and protein system for evaluating cattle diets: II Carbohydrate and protein availability. J. Anim. Sci. 1992.70(11):3562-3577.
    [130] Socha M T, Putnam D E, Garthwaite B D, et al. Improving intestinal amino acid supply of pre-and postpartum dairy cows with rumen-protected methionine and lysine. J Dairy Sci. 2005.88(3):1113-1126.
    [131] Socha M T, Schwab C G, Putnam D E, et al. Determining methionine requirements of dairy cows during peak lactation by postruminally infusing incremental amounts of methionine. J. Dairy Sci. 1994.72(Suppl 1):92.
    [132] Soder K J, Holden L A. Lymphocyte proliferation response of lactating dairy cows fed varying concentrations of rumen-protected methionine. J Dairy Sci. 1999.82(9):1935-1942.
    [133] Souri M, Galbraith H, and Scaife J R. Comparisons of the effect of genotype and protected methionine supplementation on growth, digestive characteristics and fibre yield in cashmere-yielding and Angora goats. Anim Sci. 1998.66:217-223.
    [134] Spiekers H, Pfeffer E. Studies of the effect of supplementing protected methionine (HMM-Ca) to dairy cows on milk yield and fertility. Arch Tierernahr. 1990.40(5-6):449-458.
    [135] Storm E. érskov E R. The nutritive value of rumen microorganisms in ruminants. 4. The limiting amino acids of microbial protein in growing sheep determined by a new approach. J Nutr. 1984.57:613-622.
    [136] Sudekum K H, Wolffram S, Ader P, et al. Bioavailability of three ruminally protected methionine sources in cattle. Anim Feed Sci Technology. 2004.113(1/4):17-25.
    [137] Sulu N, Bjornstad K, Gronseth D, et al. Ruminal degradation and outflow of amino acids in cows. Zentralbl Veterinarmed. 1989.36(1):55-63.
    [138] Tamminga S, Van Straalen W M, Subnel A P J, et al. The Dutch protein evaluation system: the DVE/OEB-system. Livest. Prod. Sci. 1994.40:139-155.
    [139] Titgemeyer E C, Merchen N R, Berger L L. Evaluation of soybean meal, corn gluten meal, blood meal and fish meal as sources of nitrogen and amino acids disappearing from the small intestine of steers. J Anim Sci. 1989.67(1):262-275.
    [140] Varvikko T, Vanhatalo A, Jalava T, et al. Lactation and metabolic responses to graded abomasal doses of methionine and lysine in cows fed grass silage diets. J Dairy Sci. 1999.82(12):2659-2673.
    [141] Velle W, Kanui T I, Aulie A, et al. Ruminal escape and apparent degradation of amino acids administered intraruminally in mixtures to cows. J Dairy Sci. 1998.81(12):3231-3238.
    [142] Velle W, Sjaastad O V, Aulie A, et al. Rumen escape and apparent degradation of amino acids after individual intraruminal administration to cows. J Dairy Sci. 1997.80(12):3325-3332.
    [143] Volden H, Velle W, Harstad O M, et al. Apparent ruminal degradation and rumen escape of lysine, methionine, and threonine administered intraruminally in mixtures to high-yielding cows. J Anim Sci. 1998.76(4):1232-1240.
    [144] Wallace R J. Ruminal microbial metabolism of peptides and amino acids. J Nutr. 1996.126(4 Suppl):1326S-1334S.
    [145] Wallace R J, Munro C A. Influence of the rumen anaerobic fungus Neocallimastix frontalis on the proteolytic activity of a defined mixture of rumen bacteria growing on a solid substrate. Letters in Applied Microbiology. 1986.3(2):23-26.
    [146] Wright M D, Loerch S C. Effects of rumen-protected amino acids on ruminant nitrogen balance, plasma amino acid concentrations and performance. J Anim Sci. 1988.66(8):2014-2027.
    [147] Xu S, Harrison J H, Chalupa W, et al. The effect of ruminal bypass lysine and methionine on milk yield and composition of lactating cows. J Dairy Sci. 1998.81(4):1062-1077.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700