用户名: 密码: 验证码:
不同土壤粒径条件下长春花CesA基因的克隆与表达规律研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本实验以长春花幼叶为材料,探讨不同土壤粒径下,长春花叶片中与细胞壁合成相关的纤维素合成酶基因(CesA)表达规律。不同的土壤粒径对土壤空间及承载土壤溶液、水分、无机离子的影响不同。通过RT-PCR获得了473bp的CesA基因cDNA片段,Northern blotting结果表明不同的土壤粒径影响叶片中CesA基因的表达,在干旱胁迫条件相同的条件下,土壤粒径为60%A+40%B和40%A+60%B时的CesA基因表达较强,而在其它土壤粒径条件下表达差别不明显。此为,本研究分析了内源激素对纤维素合成酶基因的表达规律的影响,并进一步研究不同土壤环境下植物细胞壁的生物合成,及对培育抗土壤机械阻力的品种有重要的理论意义。
     具体结果如下:
     1.不同处理条件,土壤粒径和土壤紧实度,以及土壤含水率不同。
     2.以不同土壤粒径调控下的长春花叶片为材料,用TRIZOL法提取RNA,通过RT-PCR法,获得了473bp的CesA基因的cDNA片段(注册号EF547376),进行Blast比对的结果表明:与桉树的CesA4(DQ014508.1)和大麦的CesA3(AY483151.1)基因的同源性为99%。
     3.运用灵敏度强,特异性高的RNA作为探针进行Northern杂交,探讨不同的土壤粒径条件下长春花叶片中细胞壁的纤维素合成酶基因的表达特征。结果表明:在相同的土壤粒径下,干旱胁迫下的CesA基因的表达要比正常水分条件下弱;在土壤粒径不同而干旱胁迫条件相同CesA基因表达不同,即在干旱胁迫条件下60%A+40%B和40%A+60%B的土壤粒径下CesA基因表达较强,与在正常的水分条件下表达差别不明显。
     4.分别提取不同土壤粒径调控下的长春花叶片内源性激素ABA、IAA、GA,分析其变化规律。
     5.推测不同土壤粒径调控下长春花叶片内源性激素变化规律与CesA基因表达规律的相互关系。
In this study, we used the Catharanthus Roseus as the material to discuss the cloning and characterization of cellulose synthetical gene under different grain diameter and water content of soil. We got the 476bp fragment of CesA gene by RT-PCR. The result of Northern blotting indicated that the expression of CesA gene lower under the stress of water than under the normal when the level of soil grain diameter was invariable. Under the same water stress and different soil grain diameter the expression of CesA gene was higher in the situation of 60%A+40%B and 40%A+60%B. when the water was normal, there was not obvious distinction. In addition, we analysised the relation between endogenesis hormone and the expression of CesA gene. This work would be a theoretical basis for the further study of Cellulose synthesis and regulation, and would be helpful to the study of plant response under stress.
     The main results as fellow:
     1. The grain diameter, compaction and water content of soil were distinct in different condition.
     2. In this study, we purified RNA from Catharanthus Roseus with TRIZOL, and tested RNA by agarose gel. RT-PCR useing RNA as a template, we got the 476bp fragment of CesA gene. The homology of it with eucalypt, Hordeum Vulgare is 99%.
     3. Northern blotting could discuss the expression of CesA gene under different grain diameter and water content of soil. We can see that, the expression of CesA gene lower under the stress of water than under the normal when the leve of soil grain diameter was invariable. Under the same water stress and different soil grain diameter the expression of CesA gene was higher in the situation of 60%A+40%B and 40%A+60%B. when the water was normal, there was not obvious distinction.
     4. Analysised the regulations of the content of ABA、IAA、GA in different soil grain diameter.
     5. Deduced the relation between endogenesis hormone and expression of CesA gene.
引文
[1] Jian Kang Zhu. Genetic analysis of plant salt tolerance using Arabidopsis[J]. Plant Physiology.,2000,124(1): 941-948
    [2] 颜华,贾良辉,等.植物干旱胁迫诱导蛋白研究进展[J].生命的化学,2002,2(1):165-168
    [3] Elizabeth A B. Molecular responses to water deficit[J]. Plant Physiology, 1993,103(1): 1035-1040
    [4] 熊清,王伯初,等.植物抗脱水胁迫的分子机制[J].生物化学与生物物理进展,2000,27(3):247-250
    [5] 金嘉宁.LEA蛋白与植物的抗旱性[J].生物工程通讯.,2002,8(22):10-14
    [6] 郭卫东,沈向,等.植物抗旱分子机理[J].西北农业大学学报,1999,27(22):102-106
    [7] Ingram J, Bartel D. The molecular basis of dehydration tolerance in plant[J].Annu Rev Plant Physiol Plant Mol Biol, 1996,47(1): 377-403
    [8] 姜立智,梁宗锁.干旱胁迫对植物基因的诱导及基因产物的变化[J].干旱地区农业研究,2001,54(3): 87-92
    [9] 陈建新,陈占宽,等.植物对干旱胁迫响应的分子机制与抗逆基因工程的研究进展[J].热带亚热带植物学报,2000,8(1):81-90
    [10] 江香梅,黄敏仁,等.植物抗盐碱、耐干旱基因工程研究进展[J].南京林业大学学报,2001,25(5):57-62
    [11] Kazuo S,et al. Molecular responses to drought and cold stress[J]. Plant biotechnology, 1996,7(2): 161-167
    [12] Kiyosue T, Yamaguchi-Shinozakik. Cloning of cDNA for genes that are early-response to dehydration stress (ERDS) in Arabidopsis thaliana Identification of three ERDSas HAS coynate genes[J]. Plant Mol Biol, 1994,25(1): 791-798
    [13] Hoekstra FA,Golovina EA Mechanisms of pant desication tolerance[J]. Trends Plant Sci, 2001,6(2): 431-438
    [14] 苏维埃.植物对温度逆境的适应植物生理与分子生物学[J].科学出版社,2001,6(2):431-438
    [15] 郭蓓.植物盐诱导基因的研究进展[J].农业生物技术学报,1999,7(4):401-408
    [16] 郑风荣,李德全.磷脂酶D(PLD)基因的结构、表达及其表达产物在信号转导中的作用[J].植物学通报,2002,19(2):156-163
    [17] Liu L. Transcription factors and their genes in higher plants[J]. Eur J Biochem, 1999,262(1)47-257
    [18] Dubouzet JG, Sakuma Y, Ito Y. OsDREB genes in rice,Oryza sativa L.,encode transcription activators that function in drought, high-salt- and cold-responsive gene expression[J]. Plant J, 2003,33(4): 751-763
    [19] 牛吉山.植物和小麦蛋白激酶的研究现状[J].西北植物学报,2003,23(1):143-150
    [20] Xiong L,Yang Y. Disease resistance and abiotic stress tolerance in rice are inversely modulated by an abseisic acid-inducible mitogen-activated protein kinase[J]. Plant Cell, 2003,15(3): 745-759
    [21] Agrawal GK,Rakwal R, Iwahashi H. Isolation of novel rice (Oryza sativa L.) multiple stress responsive MAP kinase gene,OsMSRMK,whose mRNA accumulates rapidly in response to environmental cues[J]. Biochem Biophys Res Commun, 2002,294(5): 1009-1016
    [22] Kim JA,Agrawal GK,Rakwal R. Molecular cloning and mRNA expression analysis of a novel rice (Oryzasativa L.) MAPK kinase kinase,OsEDR1[J],an ortholog of Arabidopsis AtEDR1,reveal its role in defense/stress signalling pathways and development. Biochem Biophys Res Commun, 2003,300(4): 868-876
    [23] Strizhov N,et al. Differential expression of tWO P5CS genes controlling proline accumulation during salt-stress requires ABA and is regulated., by ABAⅠ,ABAⅡ,AXR in Arabidopsis[J]. Plant Journa.,1997,12(3): 557-569
    [24] Weretilnyk E A,et al. Genomic DNA sequence of spinach (Spinaela Oleracea L.) betaine aldehyde dehydrogenase,an enzyme implicated in adaptation to salinity and drought[J]. Proc Natl Acad Sci, 1990,87(3): 2745-2749
    [25] 宋松泉,王彦荣.植物对干旱胁迫的分子反应[J].应用生态学报,2000,13(8):1037-1044
    [26] Liu Q,et al. Isolation and expression analysis of two rice genes encoding the major intrinsic protein[J].Plant Molecular Biology, 1994,26(6): 2003-2007
    [27] Yamaguchi S K,et al. Characterization of the expression of a desiccation- responsive rd29 gene of Arabidopsis thaliana and analysis of its promoter in transgenic plants[J]. Molecular and General Genetics, 1993,236(23): 331-340
    [28] Hirayama T, et al. A gene encoding a phosphatidylinositol-specific phospholipase C is induced by dehydration and salt stress in Arabidopsis thaliana[J]. Proc Nati Acad Sci, 1995,92(5):3-3907
    [29] Kurkela S. et al. Cloning and characterization of a cold- and ABA-inducible Arabidopsis gene[J]. Plant Molecular Biology,1990,15 (1): 137-144
    [30] Wang H,et al. Promoters from kin1 and cor6.6,two homologous Arabidopsis thaliana genes: transcriptional regulation and gene expression induced by low temperature,ABA,osmoticum and dehydration[J]. Plant Molecular Biology, 1995,28(1)15-617
    [31] Iwasaki T, et al. Identification of a cis-regulatory region of a gene in Arabidopsis thaliana whose induction by dehydration is mediated by abscisic acid and requires protein synthesis[J]. Molecular General Genetics, 1995,247(1)91-398
    [32] Urao T, et al. An Arabidosis myb homolog is induced by dehydration stress and its gene product binds to the conserved MYB recognition sequence[J]. The Plant Cell, 1993,5(1): 1529-1539
    [33] Nakagawa H,et al. A rice bZIP protein,designated OSBZ8,is rapidly induced by abscisic acid[J]. The Plant Journal, 1996,9(1): 217-227
    [34] Urao T, et al. Two genes that encode Ca2+-dependent protein kinases are induced by drought and highsalt stress in Arabidopsis thaliana[J]. Molecular General Genetics, 1994,244(1): 331-340
    [35] H wang I,et al. An Arabidopsis thaliana root-specific kinase homolog is induced by dehydration,ABA,and NaCI[J]. The Plant Journal, 1995,8(1): 37-43
    [36] Mizoguchi T, et al. Two genes that encode ribosomalTprotein S6 kinase homologs are induced by cold or salinity stress in Arabidopsis thaliana[J]. FEBS Lett, 1995,358 (2): 199-204
    [37] Mizoguchi T, et al. A gene encoding a mitogen-activated protein kinase is induced simultaneously with genes for a mitogen-activated protein kinase and an S6 ribosomal protein kinase by touch,cold,and water stress in Arabidopsis thaliana[J]. Proc Natl Acad Sci, I996,93 (2): 765-769
    [38] Hong S W, et al. Identification of a receptor-like protein kinase gene rapidly induced by abscisic acid,dehydration,high salt,and cold treatments in Arabidopsis thaliana[J]. Plant Physiology, 1997,113(1): 1203-1212
    [39] 周建明,朱群,等.干旱胁迫诱导表达的小麦基因的cDNA片段克隆和序列分析[J].科学通报,1998,43(22):2419-2422
    [40] 张正斌,徐萍,等.作物抗旱节水相关基因的标记和克隆及转基因研究进展[J].西北植物学报,2002,22(6):1537-1544
    [41] NiRMAL.J,HIROAKI K. Isolation and characterization of water stress specific genomic gene,pwsi18,from rice[J]. Plant Cell Physiol, 1998,39(1): 64-72
    [42] 张正斌.植物对环境胁迫的整体抗逆性的若干问题探讨[J].西北农业学报,2000,45(4):6-9
    [43] 向旭,傅家瑞.脱落酸应答基因的表达调控及其与逆境胁迫的关系[J].植物学通报,1998,3(4):11-14
    [44] Hibino T. Molecular cloning and functional characterization of two kinds of betaine aldehyde dehydrogenase in betaine-accumulating mangrue Avicennia marina[J]. Plant Mol Bio, 2001,45(4): 353-363
    [45] Masle J,Passioura JB. The effect of soil strength on the growth of young wheat plants[J]. A ust J Plant Physiol, 1987,14(4): 643-656
    [46] Atwell BJ. The effect of soil compaction on wheat during early tillering. Growth,development and root structure[J]. New Phy tol, 1990,115(4): 29-35
    [47] Andrade A,Wolf DW, Fereres E. Leaf expansion,photosynthesis and water relations of sunflower plants growth on compacted soil. Plant and Soil, 1993,149(4): 175-184
    [48] Goodman AM,Ermos AR. The effects of soil bulk density on the Goodman AM,Ennos AR. The effects of soil bulk density on the morphology and anchorage mechanics of the root systems of sun flower and maize[J]. Ann Bot, 1999,83(4): 293-302
    [49] Oussible M,Crookston RK,Larson WE. Subsurface compactions reduce the root and shoot growth and grain yield of wheat[J]. A gron J,1992,84(4): 34-38
    [50] Hartung W, Zhang J,Davies WJ. Does abscisic acid play a stress physiological role in maize plants growing in heavily compacted soil J Exp Bot, 1994,45(4): 221-226
    [51] Young IM,Montagu K,Conboy J et al. Mechanical impedance of root growth directly reduces leaf elongation rates of cereals[J]. New Phytol, 1997,135(4): 613-619
    [52] Bengough AG, Young IM. Root elongation of seedling peas through layered soil of different penetration resistances[J]. Plant and Soil, 1993,149 (4): 129-139
    [53] Rosolem CA,Schiochet MA,Souza LS et al. Root growth and cotton nutrition as affected by liming and soil compaction[J]. Com mun Soil Sci Plant A nal, 1998,29 (4):169-177
    [54] Passioura JB. Soil structure and plant growth[J]. A ust J Soil Res, 1991,29(4): 717-728
    [55] Materechera SA,Dexter AR,Alston AM. Penetration of very strong soils by seedling roots of different plant species[J]. Plant and Soil, 1991, 135(4): 31-41
    [56] Bengough AG, Croser C,Pritchard J. A biophysical analysis of root growth under mechanical stress[J]. Plant and Soil, 1997,189(4): 155-164
    [57] De Freitas PL,Zobel RW, Snyder VA. Corn root growth in soil columns with artificially constructed aggregates. Crop Sci, 1999,39(4): 725-730
    [58] Barley KP. The effect of mechanical stress on the growth of roots[J]. J Ex p Bot, 1962,13(4): 95-11
    [59] Goss MJ,Russell RS. Effects of mechanical impedance on root growth in barley (Hordeum v ulgare L). Ⅲ. Observations on the mechanism of the response[J]. J Ex p Bot, 1980,31(4): 577-588
    [60] Clark LJ,Whalley WR, Dexter AR et al. Complete mechanical impedance increases the turgor of cells in the apex of pea roots[J]. Plant Cell Environ, 1996,19(4): 1099-1102
    [61] Atwell BJ,Newsome JC. Turgor pressure in mechanically impeded lupin roots[J]. A ust J Plant Physiol., 1990,17(4): 49-56
    [62] Carmi A,Heuer B. The roles of roots in control of bean shoot growth[J]. Ann Bot, 1980,48(5): 519-527
    [63] BarTal A,Feigin A,Sheinfeld Set al. Rootrestriction and NO3 solution concentration effects on nutrient uptake,transpiration and dry matter production of tomato[J]. Sci Horticult, 1995,63(45): 195-208
    [64] Lachno DR, HarrisonMurray RS,Audus LJ. The effect of mechanical impedance to root growth on the levels of ABA and IAA in root tips ofZea mays L[J]. J Ex p Bot, 1982,33(5): 943-951
    [65] Hurley MB,Rowarth J S. Resistance to root growth and changes in the concentration of ABA within the root and xylem sap during root-restriction stress[J]. J Ex p Bot, 1999,335(5): 799-80
    [66] Braam J,Davis RW. Rain-,wind- and touch-induced expression of Calmodulin and Calmodulinrelated genes in Arabidopsis[J]. Cell, 1990,60(45): 357-364
    [67] Masle J. Growth and stomatal responses of wheat seedlings to spatial and temporal variations in soil strength of bilayered soils[J]. J Ex p Bot, 1998,324(14): 1245-125
    [68] Tardieu F, Katerji N,Bethenod O et al. Maize stomatal conductance in the field: its relationship with soil and plant water potentials,mechanical constraints and ABA concentration in the xylem sap[J]. Plant Cell Environ, 1991,4(47): 121-126
    [69] Stirzaker, RJ,Passioura JB,Sutton BG et al. Soil management for irrigated vegetable production. Ⅱ. Possible causes for slow vegetable growth of lettuce associated with zero tillage[J]. Aust J Agric Res, 1993,44(8): 831-844
    [70] Arvidsson J. Nutrient uptake and growth of barley as affected by soil compaction[J]. Plant and Soil, 1999,208(7): 9-19
    [71] Passioura JB. Water transport in and to roots. A nnu Rev Plant Physiol Plant[J]. Mol Biol,1988,39(8): 245-265
    [72] Evans DG, Miller MH. Vesiculararbuscular mycorrhizas and the soil disturance induced reduction of nutrient absorption in maize[J]. New Phytol, 1988,110(7): 67-74
    [73] Bengough AG, Mullins CE,Wilson G. Estimating soil frictional to metal probes and its relevance to the penetration of soil by roots[J]. Eur J Soil Sci, 1997,48(7): 603-612
    [74] Bengough AG, Kirby JM. Tribology of the cap in maize (Zea mays) and peas (Pisum sativ um)[J]. New Phyto, 1999,142(9): 421-425
    [75] Bengough AG, Mullins CE. Use of a low friction penetrometer toestimate soil resistance to root growth[J]. Proceedi ngs of the 11th Conference of the International Soil Tillage Research Organization,1988,11(7): 1-6
    [76] Bengough AG,McKenzie BM. Sloughing of root cap cells decreases the frictional resistance to maize (Zea mays L.) root growth[J]. J Ex p Bot,1997,48(9): 885-893
    [77] McCauley, ME. Root in soil: Unearthing the complexities of roots and their rhizospheres[J]. A nnu Rev Plant Physiol Plant Mol Biol, 1999,50(12): 695-718
    [78] Bengough AG, Mullins CE. Use of a low friction penetrometer toestimate soil resistance to root growth[J]. Proceedi ngs of the llth Conf erence of the International Soil Tillage Research Organization, 1988,11 (7): 1-6
    [79] Bengough AG, McKenzie BM. Sloughing of root cap cells decreases the frictional resistance to maize (Zea mays L.) root growth[J]. J Ex p Bot,1997,48(9): 885-893
    [80] McCauley, ME. Root in soil: Unearthing the complexities of roots and their rhizospheres[J]. A nnu Rev Plant Physiol Plant Mol Biol, 1999,50(12): 695-718
    [81] Souty N,Stepniewski W. The influence of external oxygen concentration on axial root growth force in maize radicles[J]. Agronomie, 1988,8(4): 295-300
    [82] Whalley WR,Bengough AG, Dexter AR. Water stress induced by PEG decreases the maxirnumgrowth pressure of roots of pea seedlings[J]. J Ex p Bot, 1998,49(7): 1689-1694
    [83] Bengough AG, McKenzie BM. Sloughing of root cap cells decreases the frictional resistance to maize (Zea mays L.) root growth[J]. J Ex p Bot,1997,48(9): 885-893
    [84] McCauley, ME. Root in soil: Unearthing the complexities of roots and their rhizospheres[J]. A nnu Rev Plant Physiol Plant Mol Biol, 1999,50(12): 695-718
    [85] Souty N,Stepniewski W. The influence of extemal oxygen concentration on axial root growth force in maize radicles[J]. Agronomie, 1988,8(4): 295-300
    [86] Whalley WR,Bengough AG, Dexter AR. Water stress induced by PEG decreases the maximumgrowth pressure of roots of pea seedlings[J]. J Ex p Bot, 1998,49(7): 1689-1694
    [87] Bengough AG, McKenzie BM. Sloughing of root cap cells decreases the frictional resistance to maize (Zea mays L.) root growth[J]. J Ex pBot,1997,48(9): 885-893
    [88] McCauley, ME. Root in soil: Unearthing the cOmplexities of roots and their rhizospheres[J]. A nnu Rev Plant Physiol Plant Mol Bioi,1999,50(12): 695-718
    [89] Souty N,Stepniewski W. The influence of external oxygen concentration on axial root growth force in maize radicles[J]. Agronomic, 1988,8(4): 295-300
    [90] Whalley WR,Bengough AG, Dexter AR. Water stress induced by PEG decreases the maximumgrowth pressure of roots of pea seedlings[J]. J Exp Bot,1998,49(7): 1689-1694
    [91] Whalley WR,Bengough AG, Dexter AR. Water stress induced by PEG decreases the maximumgrowth pressure of roots of pea seedlings[J]. J Ex p Bot,1998,49(7): 1689-1694
    [92] Frensch J,Hsiao TC. Rapid response of the yield threshold and turgor regulation during adjustment of root to water stress in Zeamays[J]. Plant Physiol,1995,108(5): 303-312
    [93] Yu L,Ray JD,O'Toole JC et al. Use of wax petrolatum layers for screening rice root penetration[J]. Crop Sci,1995,35(6): 684-687
    [94] Keisling TC,Batchelor J T, Porter OA. Soybean root morphology in soils with and without tillage pans in the lower Mississippi River Valley[J]. J Plant Nut,1995,18(6): 373-384
    [95] Bushamuka VN,Zobel RW. Differential genotypic and root type penetration of compacted soillayers[J]. Crop Sci, 1998,38(6): 776-781
    [96] Laboski CAM,Dowdy RH,Allmaras RR et al. Soil strength and content influences on corn root distribution in a sandy soil[J]. Plant and Soil, 1998,203(8): 239-247
    [97] 汤章城.植物对干旱胁迫的反应和适应性抗逆性的一般概念和植物的抗涝性[J].植物生理学通讯,1983,12(3):24-29
    [98] 山仑,陈培元.旱地农业生态基础[M].北京:科学出版社,1998,9-33,21
    [99] Boyer J S. Leaf enlargement and metabolic rates in corn,soybean and sunflower at various leaf water potential [J]. Plant Physiol,970,46(5):23-235.
    [100] Cramer G R,Bowman,D C,Kinetics J L,et al. Cell-wall proteins induced by water deficit in bean (phaseolus valgaoris L.)seedings[J]. Plant Physiol, 1995,107(8): 119-126
    [101] 陈晓天,罗远培,石元春.作物对干旱胁迫的反应[J].生态农业研究,1998,6(4):12-15
    [102] 李连朝,王学臣.水分亏缺对植物细胞壁的影响及其与细胞延伸生长的关系[J].植物生理学通讯,1996,32(5):321-327
    [103] 王辰阳.土壤干旱胁迫对小麦形态及生理影响的研究[J].河南农业大学学报,1992,12(4):89-97
    [104] 李勤报,梁厚果.轻度干旱胁迫的小麦幼苗中与呼吸有关的几种酶活性变化[J].植物生理学报,1988,14(3):217-222
    [105] Osmond C B,Bjorkman O. Simultaneous measurement of oxygen effects on net photosynthesis and glycolate metabolism in C3 and C4 species ofAtripex [J]. Carnegie Inst Washington Yearb, 1972,71(14): 141-148
    [106] Davies W J,Zhang J H. Chemical regulation of growth and physiology in during soil: the case for abscisic acid [J]. Cur Top in Plant Biochem and Physiol,1989,8(21): 100-109
    [107] Loveys B R,a Robinson S P, Downton J S. Seasonal and diunal change in abscisic acid and water relation of apricot leaves [J]. New Phytol, 1987,107(21): 15-19
    [108] 王学臣,任海云,娄成后.干旱胁迫下植物根与地上部间的信息传递[J].植物生理学通讯,1992,28(6):397-402
    [109] Osmond C B,Bjorkman O. Simultaneous measurement of oxygen effects on net photosynthesis and glycolate metabolism in C3 and C4 species of Atripex [J]. Carnegie Inst Washington Yearb, 972, 71(4) :141-148.
    [110] 汤章城.植物对干旱胁迫的反应和适应性Ⅱ植物对干旱的反应和适应性[J].植物生理学通讯,1983,4(4):1-7.
    [111] Hanson A D,Nelsen C E,Pedersen A R, et al. Capacity for proline accumulation during water stress in barley and its implications for drought resis2tance[J]. Crop Sci, 1979, 19 (52):489-493.
    [112] Hsiao T C. Rapid changes in levels of polyribosomes in Zea mays in response to water stress[J ]. Plant Physiol, 970, 46 (16):281-285.
    [113] Singh N K,Handa A K,Hasegawa P M,et al. Protein associated with adaptation of cultured tobacco cells to NaC1 [J]. Plant Physiol, 985, 79(5) :126-137.
    [114] [122]Mattasm R E,Pauli A W. Trends in nitrate reduction and nitrogen fractions in young corn plants during heat and moisture stress[J]. Corp Sci, 1965,5 (12):181-184.
    [115] Shaner D L,Boyer J S. Nitrate reductase activity in maize leaves Ⅱ Regulation by nitrate flux at low leaf water potential [J]. Plant Physiol,1976,58(16):505-509.
    [116] Pilet O E,Saugy M. Effect of applied and endogenous indoylacetic acid on maize root growth[J]. Planta, 1985,164(8) :254-258.
    [117] Davies W J,Zhang J H. Chemical regulation of growth and physiology in during soil :the case for abscisic acid [J]. Cur Top in Plant Biochem and Physiol, 1989, 8(9) :100-126.
    [118] Loveys B R, Robinson S P, Downton J S. Seasonal and diunal changes in abscisic acid and water relation of apricot leaves [J]. New Phytol, 1987, 107(3) :15-19.
    [119] [127]王学臣,任海云,娄成后.干旱胁迫下植物根与地上部间的信息传递[J].植物生理学通讯,1992,28(6):397-402.
    [120] Margoshes M and Vallee B L. A cadmium protein from equine kidney cortex[J].J Am Chem Soc, 1957, 79(1): 4813-4814.
    [121] Vallee B L, and Wolfgang Maret. The function potential and potential functions of metallothioneins: a personal perspective [J]. Metallothionein Ⅲ, 1993, 52(12): 1-28.
    [122] A H Robbins, D E McRee, M Williamson, et al. Refined crystal structure of Cd, Zn metallothionein at 2.0 A resolution[J]. Journal of Molecular Biology, 1991, 221(4): 1269-1293.
    [123] Lane B G, Kajioka R and Kennedy T D. The wheat germ Ec protein is a zinc containing metallothionein [J]. Biochem Cell Biol, 1987, 65(3): 1001-1005.
    [124] P Meuwly, P Thibault and W E Rauser. Gamma-Glutamylcysteinylglutamic acid--a new homologue of glutathione in maize seedlings exposed to cadmium[J]. FEBS Lett, 1993, 336(3): 472-476.
    [125] M B Jelena, T S I Jelena, S T Gordana, et alo Expression analysis of buckwheat (Fagopyrum esculentum Moench) Metallothionein-like gene (MT3) under different stress and physiological conditions[J]. Journal of Plant Physiology, 2004, 161(6): 741-746.
    [126] A Zhigang, L Cuijie, Z Yuangang, et al. Expression of BjMT2, a metallothionein 2 from Brassica juncea, increases copper and cadmium tolerance in Escherichia coli and Arabidopsis thaliana, but inhibits root elongation in Arabidopsis thaliana seedlings [J]. J Exp Bot, 2006, 57(14):3575-3582.
    [127] M. E. Katherine, A. G. John, P. L. William, et al. Expression of the pea metallothioneinlike gene PsMTA in Escherichia coli and Arabidopsis thaliana and analysis of trace metal ion accumulation: Implications for PsMTA function [J]. Plant Molecular Biology, 1992, 20(6):1019-1028.
    [128] G Mir, J Domenech, G Huguet, et al. A plant type 2 metallothionein (MT) from cork tissue responds to oxidative stress [J]. J Exp Bot, 2004, 55(408): 2483-2493.
    [129] K E Rigby and M J Stilhnan. Structural studies of metal-free metallothionein[J]. Biochem Biophys Res Commun, 2004, 325(4): 1271-1278.
    [130] A J Morgan, S R Sturzenbaum, C Winters, et al. Differential metallothionein expression in earthworm (Lumbricus rubellus) tissues[J]. Ecotoxicology and Environmental Safety, 2004, 57(1): 11-19.
    [131] K Hirose, B Ezaki, T Liu, et al. Diamide stress induces a metallothionein BmtA through a repressor BxmR and is modulated by Zn-inducible BmtA in the cyanobacterium Oscillatoria brevis [J]. ToxicolLett, 2006, 163(3): 250-256.
    [132] G K Andrews. Regulation of metallothionein gene expression by oxidative stress and metal ions [J]. Biochem Pharmacol, 2000, 59(1): 95-104.
    [133] M J Chung, P A Walker, R W Brown, et al. Zinc-mediated gene expression offers protection against H2O2-induced cytotoxicity [J]. Toxicol Appl Pharmacol, 2005, 205(3): 225-236.
    [134] E Mocchegiani, L Costarelli, R Giacconi, et al. Zinc-binding proteins (metallothionein and alpha-2 macroglobulin) and immunosenescence [J]. Exp Gerontol, 2006, 41(11): 1094-1107.
    [135] E Freisinger. Spectroscopic characterization of a fruit-specific metallothionein: M acuminata MT3 [J]. Inorganica Chimica Acta, 2007, 360(1): 369-380.
    [136] R W Olafson, W D McCubbin and C M Kay. Primary- and secondary-structural analysis of a unique prokaryotic metallothionein from a Synechococcus sp.cyanobacterium [J]. Biochem J, 1988, 251(3):691-699.
    [137] Yutaka K. Definitions and nomenclature of metallothionein [J]. Methods in Enzymology, 1991, 205(1):8-10.
    [138] Fowler B A et al. Nomenclature of metallothionein: Metallothionein Ⅱ proceedings of the Second International Meeting on Metallothionein and other low molecular weight[D]. USA: Second International Meeting, 1985:19-22.
    [139] I Bertini, H J Hartmann, T Z Klein, et al. High resolution solution structure of the protein part of Cu7 metallothionein[J]. Eur J Biochem, 2000, 267(4): 1008-1018.
    [140] J H Kagi, M Vasak, K Lerch, et al. Structure of mammalian metallothionein[J]. Environ Health Perspect, 1984, 54(12): 93-103.
    [141] M Ebadi, P L Iversen, R Hao, et al. Expression and regulation of brain metallothionein [J]. Neurochem Int, 1995, 27(1): 1-22.
    [142] Yoko Uchida, et al. The growth in hibitory factor that is deficient in the Alzhemer's disease brain is a 68 amino acid metallothionein-like protein[J]. Neuron, 1991, 7(6): 337-347.
    [143] Kagi H R. Evolution, structure and chemical activity of class Ⅰ Metallothionein: An overview [J]. Metallothionein Ⅲ, 1993, 53(20): 29-56.
    [144] I Kawashima, T D Kennedy, M Chino, et al. Wheat Ec rnetallothionein genes-Like mammalian Zn2+ metallothionein genes, wheat Zn2+ metallothionein genes are conspicuously expressed during embryogenesis [J]. Eur J Biochem, 1992, 209(3): 971-976.
    [145] Grill E, Winnacker E L, and Zenk M H. Phytochelations: The principal heavy metal complexing peptides of higher plant [J]. Science, 1985, 230(44): 674-676.
    [146] Bernhard W R. Purification cadimium-binding polypeptides from and characterization of a typical zeamays [J]. Metallothionein Ⅲ, 1987, 52(10): 5-12.
    [147] 田丽萍.中国明对虾(Fenneropenaeus chinensis)金属硫蛋白基因和启动子的克隆与鉴定[D].北京:中国科学院研究生院,2005:3-4.
    [148] Shen Z G, Zhao F J and M S P. Uptake and transport of zinc in hyperaccumulator Thlaspi caerulescens and non-hyperaccumulator Thlaspvi ochroleucum [J]. Plant Cell and Environment, 1997, 7(20):898-906.
    [149] Rupp Happroach. Circular dichroism of metallothionein.a structural approach[J]. Biochem Biophys Acta, 1978, 533(1):209-226.
    [150] A Murphy, J Zhou, P B Goldsbrough, et al. Purification and immunological identification of metallothioneins 1 and 2 from Arabidopsis thaliana [J]. Plant Physiol, 1997, 113(4): 1293-1301.
    [151] 朱春明,吕暾,张日清等.猕猴桃金属硫蛋白的结构建模[J].科学通报,2000,45(6):602-607.
    [152] 茹炳根,潘爱华,黄秉乾等.金属硫蛋白[J].生物化学与生物物理进展,1991,18(4);254-259.
    [153] 魏欣,茹炳根.二价铅离子与金属硫蛋白相互作用的研究[J].中国生物化学与分子生物学学报,1999,15(2):289-295.
    [154] F Yang, M Zhou, Z He, et al. High-yield expression in Escherichia coli of soluble human MT2A with native functions[J]. Protein Expr Purif, 2007, 53(1): 186-194.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700