用户名: 密码: 验证码:
果实采后病害拮抗菌的分离筛选及其抑菌效果的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
柑橘青霉病和梨黑斑病是柑橘、梨果实贮藏期的主要侵染性病害,是造成腐烂损失的重要原因。长期以来,使用化学杀菌剂一直被认为是防治果实采后病害最有效的方法,但是存在着农药残留、环境污染和病原菌抗药性等诸多弊端,迫切需要新的安全的保鲜方法来取代化学杀菌剂的使用。生物防治是选择对产品以及人体不造成危害的微生物,利用微生物之间的拮抗作用,抑制病原菌生长的一种有效防治采后病害的新途径。
     本研究旨在分离、筛选能够抑制果实采后青霉、链格孢霉的拮抗菌株,鉴定其生物学特性,并测定所筛选出的菌株YF1,YF4和BF2及不同混配处理对柑橘青霉病和梨黑斑病的抑制效果,以及在果实伤口的定殖情况,并对其保鲜机理进行初步探讨。主要结果如下:
     1.拮抗菌的分离和筛选:用稀释平板法,从果实伤口、果实表面、叶片以及果园根际土壤中分离得到102个菌株。应用平板对峙法,通过初筛和复筛,离体筛选出10个菌株对青霉菌(Penicillium italicum)有拮抗作用,9个菌株对链格孢霉(Alternaria kikuchiana)有拮抗作用。进一步通过果实接种法,活体筛选出分别能明显抑制青霉和链格孢霉的拮抗菌YF1,YF2和BF2,室温(约25℃)下抑菌率分别为79.12%,62.5%和66.67%。
     2.拮抗菌的鉴定:根据酵母菌的形态特征、营养特征和生理特性,鉴定拮抗菌YF1为假丝酵母属(Candida sp.),YF4为柠檬形克勒克酵母(Kloeckera apiculata)。在对拮抗菌BF2的鉴定中,首先采用细菌传统的鉴定方法,对菌体的表型、生理生化特征进行了分类鉴定,结果发现,BF2符合芽孢杆菌属细菌的特征。进而采用16S rDNA分子鉴定方法,通过同源性比对及系统发育分析,鉴定拮抗菌BF2为芽孢杆菌属的蜡样芽孢杆菌(Bacillus cereus)。
     3.拮抗菌的抑菌试验:当拮抗菌浓度为106-108 CFU/mL时,生物防治的效果与拮抗菌的浓度成正相关;分别在接种1×108 CFU/mL拮抗菌YF1、YF4和BF2的前48 h, 24 h, 2 h, 0 h、后2 h, 24 h, 48 h接种病菌,同时和推后病菌接种时间,都可以维持抑菌效果,但是提前接种病菌拮抗菌的抑菌力会有所降低。拮抗菌的接种时间越早防治病害的效果越明显;YF1与YF4等体积混合用于防治青霉病,果实发病率为12.50%,优于YF1和YF4单独使用的效果,差异显著; YF1, YF4和BF2两两混合使用抑制梨黑斑病,均可显著抑制梨黑斑病的发生,发病率分别为17.5%, 10.00%和15.83%,低于单独使用一种拮抗菌; CaCl2和低剂量化学杀菌剂能够明显增强拮抗菌的抑菌效果,水杨酸与拮抗菌结合使用与单独使用拮抗菌相比,对柑橘青霉病和梨黑斑病发病率的影响不大。
     4.拮抗菌的生长动态:拮抗酵母菌YF1和YF4在有无青霉菌和链格孢霉菌作用的情况下都能够在果实伤口迅速生长定殖。菌株YF1接种48 h后,数量增加123.26倍;同时接种青霉病菌,96 h后YF1的数量可增加至144.17倍,与链格孢霉同时接种,96 h后YF1数量增加至178.29倍;拮抗菌YF4接种72 h后,数量增加了近200倍,同时接种青霉病菌,72 h后繁殖数量是起始值的344.54倍,同时接种链格孢霉,72 h后繁殖数量是起始值的294.12倍。
     5.用1×108 CFU/mL的酵母菌YF1和YF4浸泡柑橘果实后,柑橘果皮的PAL(苯丙氨酸解氨酶)、POD(过氧化物酶)显著升高,PPO(多酚氧化酶)显著降低;在柑橘果实的伤口处添加青霉(Penicillium italicum)的孢子悬浮液可以显著诱导柑橘产生β-1, 3-葡聚糖酶和几丁质酶活性。说明两种酵母菌都能诱导柑橘果实产生抗病性。
Blue mold and black spot rot are important postharvest diseases of citrus and pear fruits. Pathogens attacks are main causes of postharvest losses. Generally, synthetic fungicide was considered to be an effective means for controlling postharvest diseases. However, its disadvantages such as chemical residues in foods, environmental pollution, and the occurrence of fungicide-tolerant strains of pathogens, have accelerated the development of alternative approaches. Among these, biological control using harmless antagonistic microorganisms was proved to be a promising strategy for managing fruit diseases.
     The aim of this research is to isolate and screen effective antagonists against blue mold and pear black spot rot, and identify them. The inhibition effects and their population dynamics in wounds were evaluated after the antagonists were screened. Main conclusions were drawn as follows.
     1. There were 102 strains isolated from the wounds and the surface of fruits, leaves, and rhizosphere soil using the method of serial dilution. After primary and further screening in vitro, 10 strains exhibited inhibitory activity to Penicillium italicum and 9 strains exhibited inhibitory activity to Alternaria kikuchiana. Among screened strains, it was found that the isolates YF1, YF4 and BF2 were effective antagonists against P. italicum and A. kikuchiana on fruits through Fruits-inoculation test. The inhibition rate of isolates YF1, YF4 and BF2 got to 79.12%, 62.5% and 66.67% at 25℃.
     2. Identification of the antagonists: According to the morphological, nutritional and physiological character, we found YF1 belonged to Candida sp., and YF4 belonged to Kloeckera apiculata. In order to determine the taxonomic placement, the identification of BF2 was performed with traditional bacterial systemic identification method. And then the molecular identification of BF2 was performed. Through the comparative 16S rDNA sequences analysis and phylogenetic analysis, we found BF2 belonged to Bacillus cereus.
     3. The effects of antagonists increased with the increase of antagonists cell population when the antagonists at the concentrations of 106-108 CFU/mL. Fruits were treated with antagonists suspension at 1×108 CFU/mL at various time intervals (48 h, 24 h, 2 h, 0 h) before and after challenge-inoculated with pathogenic spore suspension at 104 spores/mL. The efficacy of antagonists against A. kikuchiana and P. italicum was maintained when it was applied simultaneously with or before the pathogens. However, the efficacy decreased when applied after the spores. The result of inoculation-time test showed that the efficacy of biocontrol increased significantly with the time antagonists applied before pathogen inoculated. In mixed-antagonists inoculation test, the blue mold infection rate was reduced to 12.50% when the two yeasts, YF1 and YF4, suspensions were applied simultaneously. This meant that the efficacy of the mixture excelled they applied individually and indicated significant discrepancy between them. The infection rates of black spot rot were 17.5%, 10.00% and 15.83% when isolates YF1, YF4 and BF2 were mixed with each other. It suggested that the efficacy of the two mixtures was better than that of YF1, YF4 and BF2. In the antangonists-enhancement test, the result showed that CaCl2 and low synthetic fungicide elevated biocontrol efficacy of antagonists. But when antagonists combined with SA, there is no different from antagonist used alone.
     4. Rapid colonization of isolates YF1 and YF4 in wounds was observed whether pathogenic spores inoculated. The population of YF1 increased 123.26 folds after 48 h. When P. italicum spores inoculated simultaneously, the population increased 144.17 folds after 96 h. The population of YF4 increased almost 200 folds after 72 h. While it was 344.54 folds compared with the start point at 72 h when P. italicum spores co-inoculated, and it was 294.12 folds compared with the start point at 72 h when A. kikuchiana spores co-inoculated.
     5. When the citrus fruits were soaked in the two yeast cell suspensions of 1×108 CFU/mL, the activities of phenlalanine ammonialyase (PAL) and peroxidase (POD) in fruits of citrus fruits raised remarkably, while polyphenol oxidase (PPO) reduced prominently and activities ofβ-1,3-glucanase and exochitiase almost did not change. But when P. italicum and the two yeasts added into the wounds of the fruit simultaneously, the activities ofβ-1, 3-glucanase and exochitiase remarkably raised by being induced. These indicate that both of the yeasts can induce diseases resistance in citrus.
引文
[1] Cursey D G, Booth R H. The postharvest phytopathology of perishable tropicalproduce. Annu Rev Phytopathology, 1972. 51. 751-765
    [2] EI-Ghaouth A, Wilson C L. Biologically based technologies for the control of postharvest diseases. Postharvest News and Information. 1995. 6. 5-11
    [3] 张维一,毕阳. 果蔬采后病害与控制. 北京. 中国农业出版社. 1994. 10-23
    [4] 文成敬,陈文瑞. 柑橘青绿霉病生物防治研究.西南农业学报. 1995. 8(3). 80-84
    [5] Dekker J,Georgopoulos S G. Fungicide agricultural publishing and documentation, resistance in crop protection. Center for Washington. 1982. 265
    [6] Spotts R A, Cervantes L A. Population pathogencity and benomyl resistance of Botrytis sp., Penicillium sp. and Mucor piriformis in packinghouses. Plant Diseases. 1986. 70. 106-108
    [7] Latorre B A, Spadaro I, Rioja M E. Occurrence of resistant strains of Botrytis cinerea to anilinopyrimidine fungicides in table grapes in Chile. Crop Protection. 2002. 21. 957-961
    [8] Wisniewski M E, Wilson C L. Biological control of postharvest diseases of fruits and vegetables. recent advance. HortScience. 1992. 27. 94-98
    [9] Spadaro D, Gullino M L. State of the art and future prospects of the biological control of postharvest fruit diseases. International journal of food microbiology. 2004. 91.185-194
    [10] 童蕴慧,徐敬友,陈夕军. 番茄灰霉病菌拮抗菌的筛选和应用.江苏农业研究. 2001. 24(4). 25-28
    [11] 郭达伟. 果蔬保鲜剂的应用研究. 中国农学通报. 2001. 17(3). 62-63
    [12] 庞学群,张昭其,黄雪梅. 果蔬采后病害的生物防治. 热带亚热带植物学报. 2002. 10(2). 186-192
    [13] 程根武,王勇,杨秀荣,杨依军. 拮抗酵母菌用语产后病害生物防治的研究进展. 天津农业科学. 2002. 8(1). 44-46
    [14] Nunes C, Usall J, Teixido N, Fons E, Vin as I. Post-harvest biological control by Pantoea agglomerans (CPA-2) on Golden Delicious apples. Journal of Applied Microbiology. 2002. 92. 247-255
    [15] Zhou T, Northover J, Schneider K E, Lu X. Interactions between Pseudomonas synngae MA-4 and cyprodinil in the control of blue mold and gray mold of apples. Can. J. Plant Pathology. 2002. 24. 154-161
    [16] Mercier J, Jimenez J I. Control of fungal decay of apples and peaches by the Biofumigant fungus Muscodor albus. Postharvest Biology and Technology. 2004, 31. 1-8
    [17] El-Neshawy S M, Wilson C L. Nisin enhancement of biocontrol of postharvest diseases of apple with Candida oleophila. Postharvest Biology and Technology. 1997. 10. 9-14
    [18] Vero S, Mondino P, Burgueno J, Soubes M, Wisniewslci M. Characterization of biocontrolactivity of two yeast strains from Uruguay against blue mold of apple. Postharvest Biology and Technology. 2002. 26. 91-98
    [19] Droby S, Wisniewski M, Ghaouth A E,Wilson C. Influence of food additives on the control of postharvest rots of apple and peach and efficacy of the yeast-based biocontrol product Aspire. Postharvest Biology and Technology. 2003, 27. 127-135
    [20] Mckeen C D, Reilly C C and Pausey P L. 1986. Production and partial characterization of antifungal substances antagonistic to Monlinia fructicola from Bacillus subtills. Phytopathology. 76. 136-39.
    [21] Emmert EAB, Handelsman J. Biocontrol of plant disease.a(gram-)positive perspective.FEMS Microbiology Letters. 1999. 171. 1-9.
    [22] Marten P, Sma11a K. Berg G. Genotypic and phenotypic differentiation of an antifungal biocontrol strain belonging to Bacillus subtilis. Journal of Applied Microbiology. 2000. 89(3). 463-471.
    [23] Zheng X Y. Sinclair J B. The effects of traits of Bacillus megaterium on seed and root colonization and their correlation with the suppression of Rhizoctonia root rot of soybean. BioControl. 2000. 45(2). 223-243.
    [24] Kim D S, Cook R J, Weller D M. Bacillus sp. L324-92 for biological control of three root diseases of wheat grown with reduced tillage. Phytopathology. 1997. 87(5). 551-558.
    [25] 廖晓兰. 罗宽油菜花上细菌的分离及其对菌核菌的拮抗作用. 湖南农业大学学报. 2000. 16 (4). 296-298.
    [26] 陈志谊,许志刚,高泰东等. 水稻纹枯病拮抗细菌的评价与利用.中国水稻科学. 2000. 14. 98-102.
    [27] Chalutz E, Wilson C L. Postharvest biocontrol of green and blue mold and sour rot of citrus fruit by Debaryomyces hansenii. Plant Diseas. 1990. 74. 134-137
    [28] Benbow J M, Sugar D. Fruit surface colonization and biological control of postharvest diseases of pear by prehar-vest yeast applications. Plant Diseases. 1999. 9. 839-843
    [29] Zahavi T, Cohen L, Weiss B. Biological control of Botrytis, Aspergillus and Rhizopus rots on table and wine grapes in Israel. Postharvest Biology and Technology. 2000. 20. 115-124
    [30] Karabulut O A, Baykal N. Biological Control of Postharvest Diseases of Peaches and Nectarines by Yeasts. J. Phytopathology. 2003. 151. 130-134
    [31] 刘绍军,林学崛,周丽艳. 啤酒酵母对草墓保鲜作用研究初报.河北农业大学学报. 1996. 19(3). 72-75
    [32] 范青,田世平,姜爱丽. 采摘后果实病害生物防治拮抗菌的筛选和分离. 中国环境科学 2001. 21 (4).313-316
    [33] Tian S P, Qin G Z, Xu Y. Survival of antagonistic yeasts under field conditions and their biocontrol ability against postharvest diseases of sweet cherry. Postharvest Biology and Technology. 2004. 33. 327-331
    [34] Zhang H Y, Zheng X D, Fu C X. Postharvest biological control of gray mold rot of pare with Cryptococcus laurentii. Postharvest Biology and Technology. 2005. 35. 79-86
    [35] 梁泉峰,池振明. 间型假丝酵母菌株对多种水果蔬菜腐败霉菌的拮抗效果和拮抗机制的研究.食品与发酵工业. 2001. 28. 34-38
    [36] Tian S P, Fan Q, Xu Y, Wang Y. Effects of Trichosporon sp. in Combination with Calcium and Fungicide on Biocontrol of Postharvest Diseases in Apple Fruits. Acta Botanica Sinica. 2001. 43 (5). 501-505
    [37] Qin G Z, Tian S P, Liu H B, Xu Y. Biocontrol Efficacy of Three Antagonistic Yeasts Against Penicillium expansum in Harvested Apple Fruits. Acta Botanica Sinica. 2003. 45 (4). 417-421
    [38] Droby S, Cohen L, Daus A, Weiss B, Horev B, Chalutz E, Katz H, Keren-Tzur M, Shachnai A. Commercial Testing of Aspire. A Yeast Preparation for the Biological Control of Postharvest Decay of Citrus. Biological Control. 1998. 12. 97-101
    [39] El-Ghaouth A, Smilanick J L, Brown G E, Ippolito A, Wilson C L. Control of Decay of Apple and Citrus Fruits in Semicommercial Tests with Candida saitoana and 2-Deoxy-D-glucose. Biological Control. 2001. 20. 96-101
    [40] Wilson C L. Wisniewski M E. Biological control of postharvest diseases. Annu Rev Phytopathology. 1989. 27. 425-441
    [41] McCormack P J, Wildman H G, Jeffries P. Production of antibacterial compounds by phylloplane inhabiting yeasts and yeastlike fungi. Applied and Environmental Microbiology. 1994. 60. 927-931
    [42] Droby S, Chalutz E. Mode of action of biocontrol agents for postharvest diseases .In. Wilson C L, Wisniewski M E (Eds), Biological control of postharvest disease of fruits and vegetables-Theory and Practice. BocaRa-ton, Florida. CRC Press. 1994. 63-75
    [43] Fan Q, Tian S P, Postharvest biological control of rhizopus rot on nectarine fruits by Pichia membranefaciens Hansen. Plant Disease. 2000.84.1212-1216
    [44] Filonow A B. Role of competition for sugars by yeasts in the biocontrol of gray mold of apple. Biocontrol science and Technology. 1998. 8.243-256
    [45] Wisniewski M E, Biles C, Droby S. Mode of action of the postharvest biocontrol yeast Pichia guillermondii. Characterization of attachment to Botrytis cinerea . Physiology Molecular Plant Pathology. 1991. 39 (4). 245-258
    [46] Castoria R, Curtis F D, Lima C. β-1, 3-glucanase activity of two saprophytic yeasts and possible mode of action as biocontrol agents against postharvest diseases. Postharvest Biology and Technology. 1997. 12. 293-300
    [47] Castoria R,Curtis F D, Lima G, Caputo L, Pacifico S, Cicco V D. Aureobasidium pullulans(LS-30) an antagonist of postharvest pathogens of fruits, study on its modes of action. Postharvest Biology and Technology. 2001. 22. 7-17
    [48] EI-Ghaouth A, Wilson C L, Wisniewski M. Ultrastructural and cytochernical aspects of the biological control of Botrytis cinerea by Candida saitoana in apple fruit . Biological Control.1998. 88.283-291
    [49] 龙超安,邓伯勋,何秀娟. 柑橘青、绿霉病高效拮抗菌34-9 的筛选及其特性研究. 中国农业科学 2005. 38(12). 2434-2439
    [50] Arras G. Mode of action of an isolate of Candida famata in biological control of Penicillium digitatum in orange fruits. Postharvest Biology and Technology. 1996. 8. 191-198
    [51] Ippolito A, EI-Ghaouth A. Control of postharvest decay of apple fruit by Aureobasidium pullulans and induction of defense responses . Postharvest Biological and Technology. 2000. 19 .265-272
    [52] 范青,田世平,刘海波.两种拮抗菌β-1,3-葡聚糖酶和几丁酶的产生及其抑菌的可能机理.科学通报,2001. 46(20).1713-1717
    [53] Droby S, Vinokur V, Weiss B. Induction of resistance to Penicillium digitatum in gape fruit by the yeast biocontrol agent Candida oteophila.Phytopathology. 2002. 92. 393 -399
    [54] EI-Ghaouth A, Smilanick J L,Wilson C L. Enhancement of the performance of Candida saitoana by the addition of glycolchitosan for the control of postharvest decay of apple and citrus fruit. Postharvest Biology and Technology. 2000. 19. 103-110
    [55] Conway W S, L,everentz B, Janisiewicz W J ,Blodgett A B,Saftner R A ,Camp M J. Integrating heat treatment, biocontrol and sodium bicarbonate to reduce postharvest decay of apple caused by Colletotrichum acutatum and Penicillium expansum. Postharvest Biology and Technology. 2004. 34. 11-20
    [56] Janisiewicz W J, Bors B. Development of a Microbial Community of Bacterial and Yeast Antagonists To Control Wound-Invading Postharvest Pathogens of Fruits. Applied and Environmental Microbiology. 1995. 61. 3261-3267
    [57] Wisniewski M E, Droby S, Chalutz E, Eilam Y. Effect of Ca2+ and Mg2+ on Botrytis cinerea and Penicillium expansum in vitro and on the biocontrol activity of Candida oleophila. Plant Pathology. 1995, 44. 1016-1024
    [58] Tian S P, Fan Q, Xu Y, Jiang A L. Effects of calcium on biocontrol activity of yeast antagonists against the postharvest fungal pathogen Rhizopus stolonife. Plant Pathology. 2002. 51. 352-358
    [59] Janisiewicz W J, Usall J. Nutritional enhancement of biocontrol of blue mold on apples. Phytopathology. 1992 . 82. 1364-1370
    [60] Janisiewicz W J. Enhancement of biocontrol of blue mold with the nutrient analog 2-deoxy-D-glucose on apples and pears. Applied and Environmental Microbiology. 1994. 60. 2671-2676
    [61] El-Ghaouth A, Smilanick J L, Wisniewski M,Wilson C L. Improved control of apple and citrus fruit decay with a combination of Candida saitoana and 2-Deoxy-D-glucose. Plant diseases. 2000. 84. 249-253
    [62] Sugar D, Spotts R A. Control of postharvestdecay in pear by four laboratery grown yeasts and two registered biocontrol products. Plant Diseases. 1999. 83. 155-158
    [63] 李萌,张海涛,虞星炬,金美芳,张卫.蔬菜内生菌的分离及其生防功能初探.江苏农业科学.2003. 5. 60-64
    [64] Schena L, Ippolito A, Zahavi T, Cohen L, Nigro F, Droby S. Genetic diversity and biocontrol activity of Aureobasidium pullulans isolates against postharvest rots. Postharvest Biology and Technology, 1999. 17. 189-199
    [65] Nunes C, Usall J, Teixido N, Vinas I. Biological control of postharvest pear diseases using a bacterium, Pantoea agglomerans CPA-2. International Journal of Food Microbiology. 2001. 70. 53-61
    [66] Karabulut O A, Baykal N. Biological Control of Postharvest Diseases of Peaches and Nectarines by Yeasts. Phytopathology. 2003. 151. 130-134
    [67] Qin G Z, Tian S P, Xu Y. Biocontrol of postharvest diseases on sweet cherries by four antagonistic yeasts in different storage conditions. Postharvest Biology and Technology. 2004. 31. 51-58
    [68] Smilanlck J L, Denis-Arrue R, Bosch J R, Gonzalez A R, Henson D, Janisiewicz W J. Control of post-harvest brown rot of nectarines and peaches by Pseudomor}as species. Crop Protection. 1993. 12. 513-520
    [69] Wilson C L, Wisniewski M E, Droby S, Chalutz E. A. selection strategy for microbial antagonists to control postharvest diseases of fruits and vegetables. SciHortic. 1993. 53. 183-189
    [70] Janisiewicz W J. Roitman J. Biological control of blue and gray mold on apple and pear with Pseudomonas cepacia. Phytopathology. 1988. 78. 1697-1700
    [71] Filonow A B, Vishniac H S, Anderson J A, Janisiewicz W J. Biological control of Botrytis Ctnerea in apple by yeasts from various habitats and their putative mechanisms of antagonism. Biocontrol. 1996. 7. 212-220
    [72] Fravel D R. Role of antibiosis in the biocontrol of plant diseases. Annu Rev Phytopathology. 1988. 26-75
    [73] Spadaro D, Vola R, Piano S, Gullino M L. Mechanisms of action and efficacy of four isolates of the yeast Metschnikowia pulcherrima active against postharvest pathogens on apples. Postharvest Biology and Technology. 2002. 24. 123-134
    [74] Wszelaki A L, Mitcham E J. Effect of combinations of hot water dips, biological control and controlled atmospheres for control of gray mold on harvested strawberries. Postharvest Biology and Technology. 2003. 27. 255-264
    [75] Roberts R G Postharvest biological control of gray mold of apple by Cryptococcus lawrentii. Phytopathology. 1990. 80. 526-530
    [76] Smilanlck J L Denis-Arrue R. Control of green mold of lemons with Pseudomonas species. Plant Diseases. 1992. 76. 481-485
    [77] 张纪忠. 微生物分类学. 上海. 复旦大学出版社. 1990. 364-398
    [78] R.E.布坎南, N.E.吉本斯等编. 伯杰细菌鉴定手册. 北京. 科学出版社. 1984.
    [79] 东秀珠, 蔡妙英. 常见细菌系统鉴定手册. 北京. 科学出版社. 2001. 409-412
    [80] 周德庆. 微生物实验手册. 上海. 上海科学出版社. 1988.
    [81] Lodder & Kreger-van Rij. The Yeasts, A Taxonomy Study. 3rd edn, Elsevier, Amsterdam.
    [82] Yao H J., Tian S P. and Wang Y S. Sodium bicarbonate enhances biocontrol efficacy of yeasts on fungal spoilage of pears. International Journal of Food Microbiology. 2004. 93. 297-304
    [83] El-Ghaouth A, Wilson C L and Wisniewski M. Ultrastructural and cytochemical aspect of the biocontrol activity of Candida saitoana in apple fruit. Phytopathology. 1998. 88. 282-291
    [84] 张志良,吴光耀. 植物生物化学技术和方法. 北京. 农业出版社. 1986.
    [85] 韩雅珊.食品化学实验指导.北京.北京农业大学出版社.1992.28-30
    [86] 郭红辉,简在海,贾克功.冷藏龙眼果皮细胞膜透性、PPO 活性和酚类物质含量的变化.湛江海洋大学学报.2003.23 (4 ). 64-68
    [87] Jijakli M H, Lepoivre P. Characterization of an exo β-1, 3-Glucanase produced by Pichia anomala strain K aratagonist of Botrytis cinerea on apples.Phytopathology Society Press. 1998. 335-343
    [88] 史益敏,颜季琼. 番茄感染 TMV 诱导的β-1, 3-葡聚糖酶的纯化和性质. 植物病理学报. 1993. 19 (4). 555 -558
    [89] Bonaterra A, Mari M, Casalini L, Montesinos E. Biological control of Monilinia laxa and Rhizopus stolonifer in postharvest of stone fruit by Pantoea agglomerans EPS125 and putative mechanisms of antagonism. International Journal of Food Microbiology. 2003. 84. 93-104
    [90] Conway W S, Sams C E. Possible mechanisms by which postharvest calcium treatment reduce decay in apples. Phytopathology. 1984. 74. 208-210
    [91] McLaughlin R J, Wisniewski M E, Wilson C L, Chalutz E. Effect of inoculum concentration and salt solutions on biological contiol of postharvest diseases of apple with Candida sp. Phytopathology. 1990. 80. 456-461
    [92] Holmes, G J. and Eckert, J.W. Sensitivity of Penicillium digitatum and P. italicum to postharvest citrus fungicides in California. Phytopathology. 1999. 89. 716-721.
    [93] Chand-Goyal, T. and Spotts, R.A. Control of postharvest pear diseases using natural saprophytic yeast colonists and their combination with a low dosage of thiabendazole. Postharvest Biology and Technology. 1996. 7. 51-64.
    [94] Wilson C L, Wisniewski M E. Biological Control of Postharvest Diseases of Fruits and Vegetables-Theory and Practice. Boca Raton, Florida, USA CRC Press. 1994. 182
    [95] 贺立宏,宾金华. 高等植物中的多酚氧化酶. 植物生理学通讯. 2001. 37 (4 ). 340-345
    [96] 余叔文,汤章城. 植物生理学与分子生物学(第二版). 北京. 科学出版社. 1998. 390-401
    [97] 张云华,王善广,牟其芸. 套袋对莱阳仕梨果皮结构和 PPO, POD 活性的影响. 园艺学报. 1996. 23 (1 ). 23-26
    [98] Boner T, Gehri A., Mauch F., et al. Chitinase in bean leaves.Inducation by ethylene, purification, properties, and possible function. Plant. 1983. 157.22-31
    [99] Schlumbaum A, Mauch F, Vogeli U, et al. Plant chitinase are potent inhibitors of fungal growth.Nature. 1986. 324. 365-367
    [99] Lim6n M C.,Pintor-Toro J A., and Benitez T. harzianum transformats that overexpress. Increased antifungal activity of Trichoderma a 33-kDa chintinase. Phytophology. 1999. 89.254-256
    [100] Lorito M, Hayes C K, Di Pietro A, et al. Purification,characterization,and synergistic activity of a glucan 1, 3-β-glucosidase and an N-acetly-β-glucosaminidase from Trichoderma harzianum. Phytopathology. 1994. 84.398-400
    [101] Chet I. Trzchoderm. Application, mode of action, and potential as biocontrol agent of soilbrone plant pathogenic fungi. In.Chet I. (Ed). Innovative Apporoaches to Plant Disease Control. John Wiley&.Sons, New York, USA. pp. 1987. 137-160
    [102] Chiu S C., Taean S S. Glucanolytic enzyme production by Schizophyllum commune Fr. During mycoparasitism. Physiology Molecular Plant Pathology. 1995. 46 (2) .83-94

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700