用户名: 密码: 验证码:
永磁直线同步电动机关键技术的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着数控加工技术不断的要求实现高速和超高速化、精密和超精度化,永磁直线同步电动机(PMLSM)直接驱动技术在精密定位领域中得到了广泛的应用。直线电机伺服系统与传统的“旋转电机+滚珠丝杠”进给方式相比,虽然消除了机械传动链所带来的一些不良影响,但由于其本身的结构特性,要求在设计时努力提高电机推力和推力密度,采取各种有效措施减少直线电机的推力波动,否则零传动将失去原来所希望的意义。本文围绕PMLSM关键技术的研究展开,所做工作主要包括以下几个部分:
     首先,为了减少电机的体积,提高推力密度,对目前广泛应用的多极、少齿的结构和绕组进行了分析研究。合理的设计PMLSM的结构和绕组,归纳总结了这种特殊绕组在直线电机中的应用,并把这种绕组推广到一般化。对PMLSM的空载反电动势波形进行谐波分析,证明了这种绕组具有高的基波绕组因数和较低的谐波含量。
     其次,针对直线电机的齿槽效应和端部效应引起的Detent Force提出了一些优化措施。利用集中绕组分数槽和磁导调制相结合的方法对齿槽间的磁导波进行移相调制,有效的消除齿槽力。对直线电机固有的端部效应,提出了优化初级长度的方法对两端部磁导的相位进行调制,优化了初级长度,有效的削弱了端部作用力。在优化初级长度的基础上,提出了两单元段间相移的办法进一步削弱了端部作用力。在以上工作的基础上,得出了一个极距下的Detent Force的波形图。
     最后,通过单元电机的比较,得出了这种特殊绕组电机的参数计算方法。实测空载反电动势值与理论值比较,误差在1%以内。推导出了PMLSM的电磁功率及推力方程等;在讨论了力角特性的基础上,重点深入分析了频率对电磁功率与推力的影响和在矢量控制状态下电机的运行特性。编制了电磁计算程序,对电机进行了矢量控制有限元计算。开发出了一台永磁直线同步电动机。
Along with the demands of high and ultra-high speed, exactitude and ultra-exactitude in the development of numerical control machining technique, Permanent Magnet Linear Synchronous Motor (PMLSM) as direct drive in the field of precision positioning has had widely applications. Compared with the conventional rotary motor and scroll lever, the linear motor's servo system has removed the bad effects which are caused by the mechanical gearing. Because of structural speciality, it needs to improve the motor's thrust and thrust density hardly during design process, and adopt any kinds of effective methods to reduce the thrust undulation of linear motor. Otherwise zero transmission will lose its originally expected meanings. This thesis's works circumfuse study on the key technique of PMLSM, the main work including the following sections.
     Firstly, in order to reduce the volume and increase the thrust density of the motor, the present wide used multi-pole, fewer tooth structure and windings have been analyzed and studied. The paper presents a reasonable design of the structure and windings of PMLSM, and concludes the application of this kind of special windings in linear motor, moreover, extends this kind of windings to generalization. The harmonic wave of back-EMF during non-load state of the motor has been analyzed too. And it's proved this kind of winding has higher fundamental wave winding coefficients and lower harmonic wave content.
     Secondly, aims at the detent force brought by end effect and cogging effect of linear motor, the paper presents some optimal steps. With the method of using concentrated and fractional-slot windings combined with permeance modulation, the paper gives a phase-shifting modulation to the permeance wave between teeth and slots, this eliminates cogging force effectively. For the sake of reduce the end force brought by the special end effect of linear motor, the paper presents a method of optimizing elementary length to modulate the phase of permeance of two ends, and optimizes the elementary length. On the basis of optimizing elementary length, the paper presents a method of face to face moving two modules to reduce the end force. And based on the above works, the wave plot of Detent Force between one pole distance has been given.
     At last, through the modules comparison of traditional windings and this kind of special windings, the paper proposes a kind of coefficients computing method of this special winding motor. After measuring the real non-load back-EMF and compared it with theoretical value, it's found the error is less than 1%. The author also deduced electromagnetic power and thrust equation and so on. On the basis of discussing force angle characteristic, the paper deeply analyzes the effect to electromagnetic power and thrust caused by frequency, and analyzes the motor's running characteristic of the state of vector controlling too. Furthermore, the author programmed the electromagnetic computing program, and analysis the motor during vector controlled state with finite element method. A new developed PMLSM is also given.
引文
[1] 张伯霖,谢影明,肖曙红.超高速切削的原理与应用.中国机械工程,1995,6(1):14-17.
    [2] 张伯霖,潘珊珊,于兆勤等.直线电机及其在超高速机床上的应用.中国机械工程,1997,8(4):85-88.
    [3] 黄祖尧.精密滚珠丝杠副实现高速化的前景.制造技术与机床,2001,(3):5-7.
    [4] 周惠兴.制造系统直线伺服单元的研究与应用.北京:清华大学,1998.
    [5] 郭庆鼎,王成元,周美文等.直线交流伺服系统的精密控制技术.北京:机械工业出版社,2000.
    [6] 张春良,陈子辰,梅德庆.直线驱动新技术及其在加工装备上的应用.电工技术学报,2002,17(5):45-49.
    [7] 张春良,陈子辰,梅德庆.直线电机驱动技术的研究现状与发展.农业机械学报.2002,33(5):119-123.
    [8] 杨正新,陈志华,涂阳虎等.直接驱动的发展与未来.中国机械工程,2000,11(10):180-182.
    [9] 张伯霖,张志润,肖曙红.超高速加工与机床的零传动.中国机械工程,1996,7(5):37-41.
    [10] 王先逵,陈定积,吴丹.机床进给系统用直线电动机综述.制造技术与机床,2001,(8):18-20.
    [11] 王伟进.直线电机的发展与应用概述.微电机,2004,37(1):45-46.
    [12] 乔景富.直线电机在机床上的应用.机电一体化,1998,(3):37-38.
    [13] 盛伯浩.CIMT’99上的金属切削机床技术特点分析.世界制造技术与装备市场,2000,1:11-16.
    [14] Kim W J, Trumper D L. High-precision magnetic levitation stage for photolithography. Precision Engineering, 1998, 22(2): 66-67.
    [15] Jang H K, Jong W C, Seung K S. High precision control of linear permanent magnet synchronous motor for surface mount device placement system. Proceedings of the Power Conversion Conference, 2OO2, PCC Osaka, 2002, 1: 37-42.
    [16] Mike H, Robert H, David T. The long-rang scanning stage: a novel platform for scanned-probe microscopy. Precision Engineering, 2000, 24: 191-209.
    [17] 黄伟,聂东,陈英俊.直线电机在划片机中的应用.航空精密制造技术,2001,37(6):8-10.
    [18] 石忠东,王先逵,陈定积等.永磁交流直线电机直接驱动伺服控制技术.微特电机,2002,(3):8-10.
    [19] 包化顺.清华大学研制成功交流永磁同步直线伺服系统.http://www.lkkj.gov.cn/sci/file/gwt5.doc.2004-9-14.
    [20] 叶云岳.直线电机原理与应用.北京:机械工业出版社,2000.
    [21] 潘开林.永磁直线电机的驱动特性理论及推力波动优化设计研究:(博士学位论文).杭州:浙江大学,2003.
    [22] 徐月同.高速精密永磁直线同步电机进给系统及控制技术研究:(博士学位论文).杭州:浙江大学,2004.
    [23] 潘开林,傅建中,陈子辰.永磁同步直线电机的磁阻力分析及其最小化研究.中国电机工程学报,2004,24(4):112-115.
    [24] 石丽梅,郭庆鼎,孙宜标.采用滑模观测器的交流永磁直线伺服电机无传感器控制.电气传动,1997,27(4):7-12.
    [25] 郭庆鼎,周悦,郭微.高精度永磁直线同步电动机伺服系统鲁棒位置控制器的设计.电机与控制学报,1998,2(4):208-212.
    [26] 吴敬爱,朱东起,姜新建.集中绕组永磁无刷电机的转矩研究.电工电能新技术,2003,22(3):59-63.
    [27] Inoue M, Sato K. An approach to a suitable stator length for minimizing the detent force of permanent magnet linear synchronous motors. IEEE Transactions on Magnetics, 2000, 36(4): 1890-1893.
    [28] Lim K C, Woo J K, Kang G H, etal. Detent Force minimization techniques in permanent magnet linear synchronous motors. IEEE Transactions on Magnetics, 2002, 38(2): 1157-1160.
    [29] Jung I S, Yoon S B, Shim J H, etal. Analysis of forces in a short primary type and a short secondary type permanent magnet linear synchronous motor. IEEE Transactions on Energy Conversion, 1999, 14(4): 1265-1270.
    [30] Coulomb J L. A Methodology for the determination of global electromechanical quantities from a finite element analysis and its application to the evaluation of magnetic forces, torque and stiffness. IEEE Transactions on Magnetic, 1983, 19(6): 2512-2519.
    [31] Moghani J S, Eastham J F. Field Weakening performance of a linear brushless AC machine. IEEE Transactions on Magnetics, 1996, (9): 5007-5009.
    [32] Byung Il Kwon, Kyung Il Woo, Duck Jin Kim, etal. Finite element analysis for dynamic characteristics of an inverter-fed PMLSM by a new moving mesh Technique. IEEE Transactions on Magnetics, 2000, 36(4): 1574-1577.
    [33] 夏加宽.高精密永磁直线电机端部效应推力波动及补偿策略研究:(博士学位论文).沈阳:沈阳工业大学,2006.
    [34] 许实章.电机学.北京:机械工业出版社,1981.
    [35] Jacek F G, Zbigniew J P. Linear synchronous motor: transportation and automation system. New York: CRC Press, 1999.
    [36] Chung M J, Gweon D G. Modling of the armature slotting effect in the magnetic fild distribution of a linear permanent magnet motor. Electrical Engineering, 2002, 84(2): 101-108.
    [37] dung I S, Hur J, Hyun D S. Performance Analysis of skewed PM linear synchronous motor according to various design parameters. IEEE Transactions on Magnetics, 2001, 37(5): 3653-3657.
    [38] Li T, Slemon G. Reduction of cogging torque in permanent magnet motors. IEEE Transactions on Magnetics, 1988, 24(6): 2901-2903.
    [39] Akmese R, Eastham J F. Design of permanent magnet flat linear motors for standstill applications. IEEE Transactions on Magnetics, 1992, 28(5): 3042-3044.
    [40] 李皡东.电火花机床用永磁直线电机的端部效应及其控制的研究:(硕士学位论文).沈阳:沈阳工业大学,2002.
    [41] Jahns T M, Soong W L. Pulsating torque minimization techniques for permanent magnet AC motor drives-a review. IEEE Transactions on Industrial Electronics, 1996, 43(2): 321-330.
    [42] 柴凤,李小鹏,程树康.永磁电动机齿槽转矩的抑制方法.微电机,2001,34(6):102-104.
    [43] 郭红,贾正春,詹琼华等.永磁同步直线电机电磁推力的谐波分析.微电机,2003,36(3):14-17.
    [44] Zhu Z O, Xia Z P, Howe D, etal. Reduction of cogging force in slotless lnear permanent magnet motors. Electric Power Applications, IIEE Proceedings, 1997, 144(4): 277-282.
    [45] 李庆雷,王先逵,吴丹.永磁同步直线电机推力波动分析及改善措施.清华大学学报,2000,40(5):33-36.
    [46] 焦留成,袁世鹰.永磁直线同步电动机等效电路参数计算.中国电机工程学报,2002,22(3):12-16.
    [47] 唐任远.现代永磁电机理论与设计.北京:机械工业出版社,1997.
    [48] 焦留成,袁世鹰.垂直运动永磁直线同步电动机运行特性分析.中国电机工程学报,22(4):37-40.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700