用户名: 密码: 验证码:
日光温室栽培条件下土壤养分累积特性及钾镁养分关系研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来蔬菜设施栽培在我国发展很快,已成为现代农业的重要组成部分。发展蔬菜设施栽培对发展农村经济、增加农民收入有巨大的推动作用。设施栽培作物具有生长期短,复种茬口多,需肥量高等特点,因此在实际生产中,过量施肥现象较为严重。不合理的施肥一方面影响了日光温室栽培作物的产量和品质,增加了生产成本。另一方面,对土壤和环境造成了诸多不良的影响,包括土壤养分比例失调、土壤次生盐渍化和土壤酸化等,同时也出现了一些新的营养问题,如石灰性土壤上生长的番茄发生缺镁现象。因此,有必要研究日光温室栽培条件下土壤养分的累积特性,特别是钾肥的过量施入,对土壤养分含量和盐分含量、土壤盐基离子的组成及比例等的影响。
     本试验以陕西省长安、杨凌不同地区日光温室土壤为研究对象,研究了不同年限日光温室土壤养分累积特性,不同钾镁肥配施对土壤中养分特别是钾、镁离子含量及比值的影响,以及不同肥料配比对番茄生长及养分吸收的影响,得到以下主要结论:
     (1)温室土壤与农田土壤相比,养分含量和电导率有大幅度提高,且随着种植年限的增加有不断增加的趋势,pH值则随着种植年限的增加而降低,温室土壤有酸化的趋势。温室土壤盐分含量随着种植年限的增加有一定的累积,长年限的温室明显高于短年限的温室,更高于农田。随着种植年限的增加,两地区温室土壤中各种交换性盐基含量的变化趋势不同,土壤水溶性镁和交换性镁的含量与农田土壤相比并未降低,而土壤的交换性K/Mg比值均大于0.5,认为两地区日光温室番茄缺镁可能与土壤K/Mg比值的失调有关。
     (2)与农田土壤相比较,培养不同时间温室土壤硝态氮含量、电导率、水溶性盐和交换性盐含量均高于农田土壤,而pH则低于农田土壤;供试土壤经过63天的培养后,施入氮肥的处理的NO3--N含量明显增加,说明施入的氮素经过63天的矿化及硝化反应后,从铵态氮、有机态氮转变成作物易吸收的硝态氮。所有处理的pH值均有所降低,电导率均有明显的增加。各处理在培养期间水溶性盐分的变化没有一定的规律。温室土壤中交换性钾含量增加,交换性镁含量除施用NPK肥而未施用镁肥的处理外其他处理均有所增加,交换性钙含量的变化没有一定的规律。而农田土壤的交换性钾、交换性钙和交换性镁含量均有所增加。
     (3)经过63天的培养,温室土壤未施用镁肥各处理土壤K/Mg比值随着施钾量的增加而增加,施用镁肥的各处理土壤K/Mg比值也同样随着施钾量的增加而增加,且均低于未施用钾肥的处理,说明施用镁肥有利于调节土壤K/Mg比值。由此认为,日光温室土壤过高的钾含量可能是土壤出现作物缺镁现象的原因。
     (4)与不施肥的对照相比,日光温室土壤施用氮、磷、钾肥后番茄干重并未明显增加,说明日光温室土壤养分含量丰富。在未施用镁肥的条件下施用钾肥后,番茄茎叶干重、根干重和总干重有所增加,进一步增加钾肥用量,番茄茎叶干重、根干重和总干重均有所下降。与未施用镁肥的处理相比,施用镁肥的处理植株的株高、叶绿素与光合速率均有所降低,说明施用镁肥并未改善番茄的生长状况。镁肥的施用未促进番茄对镁素的吸收;在一定范围内,增加施钾量会抑制作物对镁的吸收。各处理番茄生长前后土壤的pH值、有效磷、速效钾、水溶性盐分含量和交换性盐分含量均有不同程度降低。
In recent years, cultivating the vegetables in protected facilities such as sunlight greenhouses has increased rapidly, and this cultivating method has become an important part of modern agriculture in China. Development of protected cultivation of vegetables has tremendous impetus not only in developing of rural economy but also in increasing farmer’s income. The crops cultivated in sunlight greenhouses have a short growth period; and the greenhouses are frequently planted, and heavy fertilized. Over-fertilization is a very common in the production. It results in the low yield and poor quality of the crops, and also the low soil quality, especially the imbalance of nutrients in soil, and the salinity and acidity of the soils. The deficiency of magnesium, which usually occurs in acid soil, is reported in the calcareous soil under sunlight greenhouse. Therefore, it is necessary to study the effects of sunlight greenhouse cultivation on the nutrient accumulation in the soils; and the effects of different application of K and Mg fertilizers on the contents and ratios of different ions in soils, and on the growth and nutrient uptake of tomato.
     In this research, we had studied the accumulation of nutrients in the soils under the sunlight greenhouses in Shaanxi Province, and evaluated the effects of the different ratio of potassium and magnesium nutrient addition on the content and ratios of different base cations in soil, and on magnesium uptake by tomato. The main results showed as follows:
     1. Compared to the arable fields, the contents of nutrients and the electric conductivity (EC) in the greenhouse soils were increased significantly with the cultivation of the crops in greenhouse; on the contrary, the soil pH was decreased. As the cultivation of the crops, the salt accumulation in the greenhouse soils was also increased. The salt content in the greenhouse soils with long-term cultivation period was significantly higher than that under short-term greenhouse, and also higher than that in the arable fileds. The changes of the exchangeable ions in greenhouse soils were different from that of arable soil. The content of exchangeable and water-soluble magnesium in greenhouse soils was as high as that in arable field soils. However, the ratio of exchangeable potassium and magnesium in the greenhouse soils of Chang’an District and Yangling District were greater than 0.5. It is concluded that the magnesium deficiency of tomato in the greenhouse may relate to the imbalance of the two ions in soils.
     2. The incubation experiment showed that the contents of nitrate, water-soluble salt and the exchangeable ions, EC in greenhouse soils under the incubation period were higher than that in the arable field; and the soil pH was lower than that in the arable filed. The content of NO3--N was increased significantly under the treatment added with nitrogen fertilizer after the 63-day of incubation. It indicated the ammonium nitrogen was changed into nitrate after 63-day of nitrogen mineralization; the soil pH was declined in all treatments, the EC was increased significantly. There was no fixed trend of the changes of content of water-soluble salt in all treatments during incubation. The content of exchangeable potassium increased in greenhouse soil, and the content of exchangeable magnesium was decreased in the treatment of adding NPK fertilizer but no magnesium fertilizer, but it was increased in the other treatments. The contents of the exchangeable potassium, calcium, and magnesium in the arable field were increased.
     3. After the 63-day of incubation, the ratio of potassium to magnesium was increased in the treatments added with the increasing application rates of potash fertilizer, whether with or without magnesium fertilizer, and lower than the treatment without fertlization. It showed that the application of magnesium fertilizer can adjust the ratio of potassium to magnesium in soil. It is considered that magnesium deficiency of tomato was induced by the excessive content of potassium in soil.
     4. Compared to treatment without any fertilizer, the dry yield of tomato in greenhouse soils did not increase significantly, indicating the contents of nutrients was rich in greenhouse soils. The dry weight of stem, leaf, root and total weight of tomato plant were increased when the potassium fertilizer was added and no magnesium fertilizer was added. Higher rates of potassium fertilizer rate decreased the dry weight of stem, leaf, root and total weight of tomato plant. Compared to the treatment without magnesium fertilizer, the height of plant, Chlorophyll content and rate of photosynthesis were decreased when magnesium fertilizer was added. This showed that the application of magnesium fertilizer inhibited the tomato to absorb magnesium and limited the growth of tomato. In a certain range, the increasing amount of potassium addition inhibited the magnesium uptake by the crops. The soil pH, the content of available phosphorus and potassium, water-soluble salts and the exchangeable ions in the soils of the different treatments were decreased after harvesting the tomato.
引文
[1] 夏晓东,胡良龙.我国设施农业和工厂化农业的现状与发展[J].中国农机化,1998,(1):15-17.
    [2] 焦光才.保护地蔬菜高效栽培技术[M].北京:中国农业出版社,1996:2-5.
    [3] 张真和.我国蔬菜设施园艺的发展态势[J].北京农业,2000,(4):5-9.
    [4] 秦巧燕,贾陈忠,曲东,等.我国设施农业发展现状及施肥特点[J].湖北农学院学报,2002,22(4): 373-376.
    [5] 冯永军,陈为峰,张蕾娜,等.设施园艺土壤的盐化与治理对策[J].农业工程学报,2001,17 (2):111-114.
    [6] 中国农业年鉴编辑委员会.中国农业年鉴 2001[M].北京:中国农业出版社,2001:250-251.
    [7] 王绪奎,陈光亚.设施农业中的土壤问题及对策[J].江苏农业科学,2001,(6):39-42.
    [8] 童有为,陈淡飞.温室土壤次生盐渍化的形成和治理途径研究[J].园艺学报,1991,18(2):159 -162.
    [9] 夏立忠,杨林章,王德建.苏南设施栽培中旱作人为土养分与盐分状况的研究[J].江苏农业科学,2001, (6):43-46,49.
    [10]王平,刘淑英.兰州安宁区蔬菜保护地土壤盐分的含量及其剖面分布规律[J].甘肃农业大学学报, 1998,33(2):186-189.
    [11] KARLEN D L, GARDNER J C, ROSEK M J. A Soil quality framework for evaluating the impact of CRP[J]. Journal of Production Agriculture.1998,11(1):56-60.
    [12] STENBERG B. Monitoring soil quality of arable land: microbiological indicators [J]. Acta Agriculturae Scandinavica, Section B, Soil and Plant Science,1999,49:1-24.
    [13] 魏文麟.菜地偏施化肥的后果与对策[J].福建农业科技,1998(1):25.
    [14]王朝辉,宗志强,李生秀.菜地和一般农田土壤养分累积的差异[J].应用生态学报,2002,13(9): 1091-1094.
    [15]王学军.日光温室土壤次生盐渍化分析[J].北方园艺.1998,3:12-13.
    [16]郭文忠,李丁仁.宁夏日光温室土壤次生盐渍化发生原因及治理[J].长江蔬菜,2003(4):39-40.
    [17]梁成华,唐咏,须湘成,等.日光温室菜园土的磷素形态及吸附解吸特征[J].植物营养与肥料学报, 1998,4(4):345-351.
    [18]Qing Chen, Xiaosheng Zhang, Hongyan Zhang,Peter Chrestie, Xiaolin Li, Dieter Horlacher and Hans-Peter Liebig.Evaluation of current fertilizer practice and soil fertility in vegetable production in the Beijing region. Nutrient Cycling in Agroecosystems, 2004, 69:51-58.
    [19]程美廷.温室土壤盐分积累盐害及其防治[J].土壤肥料,1990,(1):1-4.
    [20]马文奇.山东省作物施肥现状、问题与对策[D].北京:中国农业大学资环学院植物营养系,1999.
    [21]Neeteson J.J., Booij R. and Whitmore A.P. 1999.A review on sustainable nitrogen management in intensive vegetable production systems.Acta Hort, 506:17-26.
    [22]薛继澄,毕德义,李家金,等.保护地栽培蔬菜生理障碍的土壤因子及对策[J].土壤肥料,1994(1): 4-9.
    [23]郭国平,孟善民,丁成,等.宿豫县蔬菜施肥现状、存在问题及对策[J].磷肥与复肥,2001,16 (4):68-69.
    [24]陈新平,张福锁.北京地区蔬菜施肥的问题与对策[J].中国农业大学学报,1996(5):63-66.
    [25]白纲义,赵杨景,梁惠英.京郊菜地土壤肥力状况及其培肥问题[J].土壤肥料,1984(2):8-12.
    [26]奚振邦,施秀珠.蔬菜作物的吸肥特性与推荐施肥.土壤,1990,22(4):218-221.
    [27]Sharpley AN and Rekolainen. Phosphorus in agriculture and its environmental implications[A].InTunney, H Et al.eds. Phosphorus Loss from Soil to Water [C], 1997:1-53.CAB International, Wallingford.
    [28]马文奇,毛达如,张福锁.山东省蔬菜大棚养分积累状况[J].磷肥与复肥,2000,15(3):65-67.
    [29]赵凤艳,吴凤芝,刘德,等.大棚菜地土壤理化特性的研究[J].土壤肥料,2000,(2):11-13.
    [30]吴凤芝,赵凤艳,刘元英.设施蔬菜连作障碍原因综合分析与防治措施[J].东北农业大学学报,2000, 31(3):241-247.
    [31]黄锦法,李艾芬,马树国,等.浙江嘉兴保护地土壤障碍的农化性状指标研究[J].土壤通报,2001, 32(4):160-162.
    [32]刘兆辉,李小林,祝洪林,等.保护地土壤养分特点[J].土壤通报,2001,25(5):206-208.
    [33]藏壮望.保护地土壤障害与综合治理[J].蔬菜,2002,(6):21-22.
    [34]葛晓光.设施蔬菜栽培的土壤障碍及克服途径[J].中国蔬菜,2000,(增刊):16-19.
    [35]吴多三.土壤盐类浓度障害对蔬菜作物生产的影响[J].蔬菜,1987,(3):1-4.
    [36]吴志行,石海仙,董明光,等.大棚蔬菜连作障碍及土壤次生盐渍化原因及防止[J].长江蔬菜,1994, (5):21-23.
    [37]刘德,吴凤芝.哈尔滨市郊蔬菜大棚土壤盐分状况及其影响[J].北方园艺,1998,(6):1-3.
    [38]张爱君,张明普,张洪源.果树苗圃土壤连作障碍的研究初报[J].南京农业大学学报,2002,25(1): 19-22.
    [39]张春兰,张耀栋,周权锁.不同作物茬口对减轻蔬菜保护地土壤盐害及连作障害的作用[J].土壤通报, 1995,26(6):257-259.
    [40]吴凤芝,王伟.大棚番茄土壤微生物区系研究[J].北方园艺,1999,(3):1-2.
    [41]田坤发.设施蔬菜病虫害的发生特点与防治对策[J].湖北植保,2000,(5):16-17.
    [42]汪立刚,沈阿林,孙克刚,等.大豆连作障碍及调控技术研究进展[J].土壤肥料,2001,(5):3-7.
    [43]李文庆,贾继文,李贻学.大棚种植蔬菜对土壤理化及生物性状的影响[J].见:谢建昌等编著,菜园土壤肥力与蔬菜合理施肥.南京:河海大学出版社,1997,76-79.
    [44]吴凤芝,刘德,王东凯,等.大棚蔬菜连作年限对土壤主要理化性状的影响[J].中国蔬菜,1998 (4):5-8.
    [45]廖允成,王立祥.设施农业与中国农业现代化建设[J].农业现代化研究,1999,20(1):5-8.
    [46]申泰雄,姚玉林,包颖.设施农业的国内外现状与我省的发展对策[J].农机化研究,1999, (1):5-10.
    [47]肖千明,高秀兰,娄春荣,等.辽宁省保护地土壤肥力现状分析[J].见:谢建昌等编著,菜园土壤肥力与蔬菜合理施肥.南京:河海大学出版社,1997:52-56.
    [48]Wang Yu, Zhang Yiping. Quantitative effect of soil texture composition on retardation factor of K+ transport. Pedo-sphere, 2001, 11(4): 377-382.
    [49]王吉智主编.宁夏土壤[M].银川:宁夏人民出版社,1990.
    [50]李文庆,杜秉海,骆洪义,等.大棚栽培对土壤微生物区系的影响[J].土壤肥料,1996,(2):31-33.
    [51]吴凤芝,栾非时,王东凯等.大棚黄瓜连作对根系活力及其根际土壤酶活性影响的研究[J].东北农业大学学报,1996,27(3):255-258.
    [52]吴凤芝,刘德,王东凯,等.大棚番茄不同连作年限对根系活力及其品质的影响[J].东北农业大学学报,1997,28(1):33-38.
    [53]胡承孝,邓波儿,刘同仇.施用氮肥对小白菜、番茄中硝酸盐积累的影响[J].华中农业大学学报, 1992,11(3):239-243.
    [54]葛晓光,张恩平,高慧,等.长期施肥条件下菜田-蔬菜生态系统变化的研究[J].园艺学报,2004, 31(2),178-182.
    [55]余同海,陈美娜.设施栽培对青紫泥土壤主要理化性状的影响[J].浙江农业科学,2005,6:438-440.
    [56]孙松发,陈剑中,盛正国,等.温室土壤次生盐渍化的研究[J].上海农学院学报,1992,10 (2):132-140.
    [57]李廷轩,周健民,段增强,等.中国设施栽培系统中的养分管理[J].水土保持学报,2005,19(4):70 -75.
    [58]刘德,吴凤芝.哈尔滨市郊蔬菜大棚土壤盐分状况及其影响[J].北方园艺,1998,(6):1-3.
    [59]侯云霞,钱光熹,王建民,等.上海蔬菜保护地得以土壤盐分状况[J].上海农业学报,1987,3 (4):31-38.
    [60]李文庆,李光德,骆洪义.大棚栽培对土壤盐分状况影响的研究[J].山东农业大学学报,1995,26(2): 165-169.
    [61]余海英,李廷轩.辽宁设施栽培土壤盐分累积变化规律研究[J].水土保持学报,2005,19 (4):80-83.
    [62]李海云,王秀峰,禹贤.设施土壤盐分积累及防治措施的研究进展[J].山东农业大学学报,2001,32(4): 535-538.
    [63]杨月红,孙庆艳,沈浩.植物的盐害和抗盐性[J].生物学教学,2002,27(11):1-2.
    [64]张昌爱,毕军,夏光利.大棚土壤的理化状况和微生物状况[J].安徽农业科学,2002,30(2):275-276.
    [65]马光恕,廉华.设施内环境要素的变化规律及对蔬菜生长发育的影响[J].黑龙江八一农垦大学学报,2002,14(3):16-20.
    [66]刘广明,杨劲松.地下水作用条件下土壤积盐规律研究[J].土壤学报,2003,40(1):65-69.
    [67]张文英,尹孝萍.蔬菜施肥污染及防治措施[J].青海农林科技,2002(3):54-55.
    [68]徐瑞富,王小龙.花生连作田土壤微生物群落动态与土壤养分关系研究[J].花生学报,2003,32(3): 19-24.
    [69]周艺敏.天津菜田施肥对土壤环境及蔬菜品质的影响[A].施肥与环境学术讨论会论文集[C].中国农业科技出版社,1994:11-22.
    [70]孟鸿光,李中,刘乙俭,等.沈阳城郊温室土壤特性调查研究[J].土壤通报,2000,31(2):70-73.
    [71]史桂芳,毕军,夏光利,等.保护地蔬菜土壤障碍指标界定及应用研究[J].耕作与栽培,2003,(3): 49-50.
    [72]Srivasitava SC, SinghJS, MicrobialC, N and P in dry tropical forest soil: effect of alternate land-use and flux [J].Soil Boil Biochem, 1991, 23(2):117-124.
    [73]鲁素云.植物病害生物防治学[M].北京:北京农业大学出版社,1993.
    [74]尹睿,张华勇,黄锦法,等.保护地菜田与稻麦轮作田土壤微生物学特征的比较[J].植物营养与肥料学报,2004,10(1):57-62.
    [75]马汇泉,勒学,孙伟萍,辛惠普.大豆连作障碍及其产生机理初探[A].中国农学会.全国第二届青年农学学术年会论文集[C].北京:农业出版社,1995:528-530.
    [76]唐咏,梁成华,刘志恒,等.日光温室蔬菜栽培对土壤微生物和酶活性的影响[J].沈阳农业大学学报(自然科学版),1999,30(1):16-19.
    [77]SinghHP, BatishDR, KohilRK. Autotoxicity: Concept, organisms and ecological significance [J]. Crit Rev Plant Sci,1999, 18:757-772.
    [78]杨竹青.钙、镁对番茄根、茎叶解剖结构的影响[J].华中农业大学学报,1994,13(1):51-54.
    [79]H.马斯纳著,曹一平译.高等植物的矿质营养[M].北京:北京农业出版社,1988.
    [80]肖常沛,杨竹青.不同钙镁肥对蔬菜产量和品质的影响[J].长江蔬菜,2000(4):27-29.
    [81]肖常沛,杨竹青.镁对黄瓜与小白菜生长、养分吸收及某些酶活性的影响[J].华南师范大学学报(自然科学版),2001(4):68-72.
    [82]袁可能.植物营养元素的土壤化学[M].北京:科学出版社,1983:261-293.
    [83]Hossner L R and E C Doll. Magnesium fertilization of potatoes as related to liming and potassium[J]. Psssa,1970,34:772-774.
    [84]Mayland H f and Wilkinson S R. Soil factor affecting magnesium availability in plant-animal systems: Areview[J].J Anim Sci,1989,67:3437-3 444.
    [85]谢建昌,陈际型,朱月珍,等.红壤区几种主要土壤的镁素供应状况及镁肥肥效的初步研究[J].土壤学报,1963,11(3):294-305.
    [86]白由路,金继运,杨俐苹.我国土壤有效镁含量及分布状况与含镁肥料的应用前景研究[J].土壤肥料,2004(2):3-5.
    [87] Barber A S. Soil nutrient bioavailability: Mechanistic approach[M]. New York: A Wiley–inter-science Publication,1984:275-296.
    [88]李映强.土壤中镁的生物有效性及其动力学性质[J].热带亚热带土壤科学,1998,7(3):236-238.
    [89]李伏生.土壤镁素和镁肥施用的研究[J].土壤进展,1994,22(4):21-22.
    [90]Mok wuney A U and S W Melsted.Magnesium forms in seldected temperature and tropical soils [J]. Psssa, 1972, 36: 762-764.
    [91]汪洪.土壤镁素研究的现状和展望[J].土壤肥料,1997(1):9-13.
    [92]林齐民,陈举鸣.福建省主要土壤类型的镁素含量[J].福建农学院学报,1986,15(2):132-140.
    [93]丁群英.安徽沿淮地区土壤交换性镁含量及镁对大豆营养的影响[J].安徽农学通报,2002,8(6):60- 62.
    [94]Barber A S. Soil nutrient bioavailability: Mechanistic approach [M]. New York: A Wiley–inter-science Publication,1984:275-296.
    [95]Marion G M and K L Babcock. The solubilities of carbonates and phosphates in calcareous soil suspensions[J]. Psssa, 1977, 41:724-728.
    [96]Wang Hong, Chu Tianduo. Characteristics of magnesium release from fluvo-aquic soil and relative availability of magnesium to plants. Pedosphere, 2000, 10(3):281-288.
    [97]黄鸿翔,陈福兴,徐明岗,等.红壤地区土壤镁素状况及镁肥施用技术的研究[J].土壤肥料,2000(5):19 -23.
    [98]李延,刘星辉,庄卫民.福建山地龙眼园土壤镁素状况与龙眼缺镁调控措施[J].山地学报,2001, 19(5): 460-464.
    [99]杨力,刘光栋,宋国菡,等.山东省土壤交换性镁含量及分布[J].山东农业科学,1998(3):8-12.
    [100]龚子同,黄标,周瑞荣.南海诸岛土壤的地球化学特征及其生物有效性[J].土壤学报,1997,34(1): 10-27.
    [101]戴昭华,黄衍初.天津地区土壤中若干金属元素间的相关性[J].土壤学报,1984,21(3):315-319.
    [102]张淑香,依艳丽.草河口地区土壤中重金属等元素含量的相互关系及其影响因素[J].土壤学报,1999,36(2):253-260.
    [103]万洪富,钟继洪.中国土壤微量元素肥力及管理[A].见:沈善敏主编.中国土壤肥力[M].北京:中国农业出版社,1998:370-449.
    [104]BREJDA J J.Factor analysis of nutrient distribution patterns under shrub live-oak in two contrasting soils[J].Soil Sci Soc Am J,1998,62(3):805-809.
    [105]CHHABRA G, SRIVASTAVA P C,GHOSH D,et a1.Distribution of available micronutrient cation as related to soil properties in different soil zone of Gola-kosi inter basion[J].Crop Research(Hisar),1996,11(3):296-303.
    [106]Mclen E O and M D Carbonell. Calcium, magnesium and potassium saturation ratio in two soils and their effects upon yields and nutrient contents of German millet and alfalfa[J]. Psssa, 1972, 36:927-930.
    [108]Mok wuney A U and S W Melsted. Interrelationships between soil magnesium forms commun in Soil Sci and PI [J]. Analysis,1973, 4:397.
    [108]Haby,V A.,M P Russelte、and Skogley,E O Testing soils for potassium,calcium and magnesium In: Westerman,R L(ed)Soil testing and plant analysis(3rd)1990:181-227.
    [109]潘开文. 四川大沟流域土壤活性铝含量及其对连香树群落的影响[J].山地学报,1999,17(2):147-151.
    [110]Saif HT, Smeck NE, Bigham JM. Pedogenie influence on base saturation and calcium/magnesium ratios in soils of Southeastern Ohio[J]. Soil Sci Soc Am J, 1997, 61(2): 509-515.
    [111]Curtin D. Selles F. Steppuhn H、Estimating calcium-magnesium selectivity in smectitic soils from organic matter and texture[J]. Soil Sci Soc Am J, 1998, 62(5): 1280-1285.
    [112]姜勇,张玉革,梁文举,等.耕地土壤交换性钙镁比值的研究[J].土壤通报,2003,34(5): 414-417.
    [113]林葆,周卫,李书田,等.长期施肥对潮土硫、钙和镁组分与平衡的影响[J].土壤通报,2001,32(3): 126-128.
    [114]Quideau SA,Graham RC,Chadwick OA,et a1.Biogeochemical cycling of calcium and magnesium by ceanothus and chamise[J].Soil Sci Soc Am J,1999,63(6):1880-1888.
    [115]鲁如坤.土壤-植物营养学原理和施肥[M].北京:化学工业出版社,1998.
    [116]Barber SA.Soil nutrient bioavailability:a mechanistic approach[M].New York:John Wiley&Sons,1995.
    [117]王芳,刘鹏,徐根娣.土壤中的镁及其有效性研究概述[J].河南农业科学,2004(1):33-36.
    [118]李玉颖,姜秀芝.镁在植物营养中的作用及研究现状[J].黑龙江农业科学,1993(3):41-43.
    [119]中国农科院土肥所.中国肥料[M].上海:上海科学技术出版社,1994:332-342.
    [120]张文.作物利用钾钙镁研究进展[J].海南农业科技,2004(4):16-21.
    [121]臧小平.土壤铝毒与钙镁营养[J].热带作物科技,1996(4):32-33,36.
    [122]施洁斌,秦遂初,单英杰等.酸性土壤小麦缺镁与铝及钙钾元素的关系研究[J].浙江农业科学,1997, (6):282-284.
    [123]张文.作物利用钾钙镁研究进展[J].海南农业科技,2004(4):16-21.
    [124]付明鑫,谭新霞,任凤兰,等.不同镁盐阴离子对土壤性质的影响[J].新疆农业科学.1994 (1):28-31.
    [125]蒋式洪,何云峰.作物镁素营养与镁肥应用前景[J].化肥工业,1994(1):17-18,23.
    [126]阮建云,管彦良,吴洵.茶园土壤镁供应状况及镁肥施肥效果研究[J].中国农业科学,2002,35(7):815- 820.
    [127]李春英,高伟民,陈腊梅,等.福建烟区土壤镁营养状况及施用效果研究[J].河南农业大学学报,2000, 34(1):63-66.
    [128]吴洵.安溪茶园土壤镁含量和施肥建议[J].福建茶叶,1998(2):23-26.
    [129]孙光明,黄健安,陆发熹.粤西转红壤的镁素状况及其有效性[J].华南农业大学学报,1990,11(3):39- 46.
    [130]Rolf Hardter, Marein Rex and Kristian Orlovius.Effects of different Mg fertilizer sources on the magnesium availability in soils.Nutrient Cycling in Agroeco- systems,2004,70: 249-259.
    [131]Heming S.D. and Hollis J.F.Magnesium availability from Kieserite and calcined magnesite on five soils of different pH. Soil Use Manage, 1995, 11: 105-109.
    [132]游有文,黄鸿翔,王伯仁,等.湘南地区几种主要土壤施用钾、钙、镁肥对玉米生物产量的影响[J].土壤肥料,1999,(1):20-23.
    [133]高菊生,秦道珠,陈福兴.镁肥在湘南红壤旱地作物上的增产效果研究[J].耕作与栽培,2000,(4): 31-32.
    [134]高菊生,陈福兴,秦道珠,等.湘南红壤稻田施用镁肥对水稻的增产效果[J].湖南农业科学,2000,(4): 21-22.
    [135]朱永兴,陈福兴.红壤丘陵茶园镁营养调控研究[J].茶叶科学,2003,23(增刊):34-37.
    [136]王伯仁,游有文,高菊生,等.湘南几种土壤钾、镁形态淋失及施用效果研究[J].广西农业科学,1999, (2):68-71.
    [137]姜勇,张玉革,梁文举,等.耕地土壤交换性镁含量的空间变异性特征[J].沈阳农业大学学报,2003, 34:181-184.
    [138]徐明岗,张一平,张君常,等.两种土壤中钙镁磷钾向根系的运移机理[J].中国农业科学,1996,29(5): 76-82.
    [139]汪洪,褚天铎,刘新保.缺镁与正常供镁的菜豆组织结构比较研究[J].中国农业科学,1999,32(4): 63-67.
    [140]关军锋,高敏,樊秀彩,等.草莓果实成熟衰老与 Ca~(2+)、CaM、Ca~(2+)-ATPase 和活性氧代谢的关系[J].中国农业科学,2002,35:1385-1389.
    [141]孙楠,曾希柏,高菊生,等.含镁复合肥对黄花菜生长及土壤养分含量的影响[J].中国农业科学, 2006,39(1):95-101.
    [142]孟赐福,傅庆林,水建国,等.土壤酸度对大豆、油莱生长和产量的影响[J].中国农业科学,1994,27(3): 63-70.
    [143]田荣生.蔬菜营养生理与土壤[M].福州:福建科学技术出版社,1982.
    [144]李先珍,王耀林,张志斌.京郊蔬菜大棚土壤盐离子积累状况初报[J].中国蔬菜,1993,(4):15-17.
    [145]张振武,龙平扬,刘秀茹,等.施肥量对大棚黄瓜产量及土壤浸出液电导率的影响[J].沈阳农业大学学报,1984,(1):29-36.
    [146]施秀珠,奚振邦,朱建萍.上海郊区蔬菜塑料大棚的土壤障碍问题[J].上海农业科技,1991, (2):28-31.
    [147]李文庆,骆洪义,丁方军,等.大棚栽培后土壤盐分的变化[J].土壤,1995,27(4):203-205.
    [148]庄舜尧,孙秀廷.氮肥对蔬菜硝酸盐积累的影响[J].土壤学进展,1995,23(3):29-35.
    [149]内海修一.环境与作物生理[M].北京:农业出版社,1984.
    [150]贾继文.山东蔬菜大棚土壤养分状况与施肥现状的调查研究[A].谢建昌.菜田土壤肥力与蔬菜合理施肥[C].江苏:河海大学出版社,1997,10:73-76.
    [151]成升魁,张秀刚.我国保护地农业及其若干问题的研究[J].自然资源,1994,(2):27-32.
    [152]梁成华.保护地蔬菜生理病害诊断及防治[M].北京:中国农业出版社,1996:2-5.
    [153]鲍士旦.土壤农化分析[M].中国农业出版社,1999.
    [154]张振华,姜泠若,胡永红,等.设施栽培大棚土壤养分、盐分调查分析及其调控技术[J].江苏农业科学,2003(1):73-75.
    [155]黎宁,李华兴,朱凤娇,等.菜园土壤的理化性质和微生物生态特征与种植年限的关系[J].生态环境,2005,14(6):925-929.
    [156]周建斌,翟丙年,陈竹君,等.设施栽培菜地土壤养分的空间累积及其潜在的环境效应[J].农业环境科学学报,2004,23(2):33-35.
    [157]史吉平,等.长期施用氮磷钾化肥和有机肥对土壤氮磷钾养分的影响.土壤肥料,1998 (1):7-10.
    [158]郭文龙,党菊香,吕家珑,等.不同年限蔬菜大棚土壤性质演变与施肥问题的研究[J].干旱地区农业研究,2005,23(1):85-89.
    [159]刘长庆,王德科,王文香.不同棚龄大棚土壤养分年度变化特征研究[J].中国农学通报,2001,17(6): 38-40.
    [160]张强,陈明昌.磷肥在石灰性土壤中的固定及其肥效演变[J].山西农业科学,1994,22 (2):48-50.
    [161]杜慧玲,冯两蕊,郭平毅.不同使用年限蔬菜大棚土壤溶质含量变化的试验研究[J].农业工程学报,2005,21(5):127-130.
    [162]吕家珑.农田磷素淋溶趋势及预测[J].生态学报,2003,23(12):2689-2701.
    [163]刘杏兰,高宗,等.有机—无机肥配施的增产效应及对土壤肥力影响的定位研究[J].土壤学报,1996 (2):138-147.
    [164]胡田田,李生秀.土壤供氮能力测试方法的研究 IV.土壤剖面中的起始 NO3-N---可靠的土壤氮素有效性指标[J].干旱地区农业研究.199,11(3):74-82.
    [165]杜连凤,张维理,武淑霞,等.长江三角洲地区不同种植年限保护菜地土壤质量初探[J].植物营养与肥料学报 2006,12(1):133-137.
    [166]Chang C. Soil chemistry after eleven annual applicationsof cattle feedlot manure [J]. J. Environ Qual. 1991, 20:475-480.
    [167]李海云,王秀峰,禹贤.设施土壤盐分积累及防治措施的研究进展[J].山东农业大学学报,2001,32 (4):535-538.
    [168]黄锦法,曹志洪,李艾芬,等.稻麦轮作改为保护地菜田土壤肥力质量的演变[J].植物营养与肥料学报,2003,9(1):19~25.
    [169]杨绍聪,吕艳玲,段永华,等.玉溪市设施栽培与露地栽培的土壤化学性状对比分析[J].土壤,2005, 37(4):433-438.
    [170]齐红岩,李天来,富宏丹,等.不同氮钾施用水平对番茄营养吸收和土壤养分变化的影响[J].土壤通报,2006,37(2):268-272.
    [171]李明德,肖汉乾,余崇祥,等.湖南烟区土壤 K、Mg 营养及其施肥效应[J].土壤通报,2004,35(3): 323-326.
    [172]晋艳,雷永和.烟草中钾钙镁相互关系研究初报[J].云南农业科技,1999,(3):6-9,47.
    [173]徐国华,鲍士旦.生物耗竭土壤的层间钾自然释放及固钾特性.土壤.1995,27(4):182-185.
    [174]汪智慧.氮钾互作及配施微量元素对番茄产量和品质的影响[J].安徽农业科学,2000,28(2): 233-234.
    [175]何念祖.植物营养原理[M].上海科技出版社,213.
    [176]孙红梅,田爱民,须晖,等.不同氮水平下钾肥对棚栽番茄的影响[J].长江蔬菜,2002:45-48.
    [177]马德华,庞金安,李淑菊,等.大棚黄瓜净光合速率的研究[J].中国蔬菜,1998(4):29-30.
    [178]张恩平,李天来,葛晓光,等.钾营养对番茄光合生理及氮磷钾吸收动态的影响[J].沈阳农业大学学报,2005,36(5):532-535.
    [179]易国英,戴平安,郑圣先,等.氮磷钾不同施用量对两系杂交水稻产量和养分吸收利用的影响[J].作物研究,2006(1):40-43.
    [180]陈际型,宣家祥.低盐基土壤 K、Ca、Mg 的交互作用对水稻生长于养分吸收的影响[J].土壤学报,1999,36(4):433-439.
    [181]史春余,张夫道,张俊清,等.长期施肥条件下设施蔬菜地土壤养分变化研究[J].植物营养与肥料学报,2003,9(4):437-441.
    [182]马茂桐,陈际型,谢建昌.菜园土壤肥力与蔬菜合理施肥[M].南京:河海大学出版社,1997.
    [183]李中,金福兰,刘乙俭.不同年限温室土壤养分状况分析[J].辽宁农业科学,1999(5):53-(封三).
    [184]王辉,董元华,李德成,等.不同种植年限大棚蔬菜地土壤养分状况研究[J].土壤,2005,37(4):460-462.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700