用户名: 密码: 验证码:
铁系纳米材料功能化及其生物环境安全性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来水体富营养化现象是水体面临的最为严重的问题。在水体营养物中,磷是导致富营养化现象的重要因素。要解决富营养化问题,首先要从水体中去除磷。
     为此筛选并合成了三种铁系纳米材料,并且考察了其去除磷酸根的主要影响因素。确定了三种铁系纳米材料对磷酸根的吸附平衡时间:Fe_3O_4对磷酸根的吸附5小时后达到平衡,磁性铁氧化物/纳米β沸石复合组装体以及Fe掺杂型β沸石对磷酸根的吸附6小时后达到平衡。并且确定了铁系纳米材料对磷酸根吸附的最佳pH值在3-5之间。筛选比较三种铁系纳米功能材料对磷酸根的吸附效果,Fe_3O_4的饱和吸附量最大,磁性铁氧化物/纳米β沸石复合组装体居中,而Fe掺杂型β沸石材料对磷酸根的饱和吸附量最低。三种铁系纳米材料对磷酸根的吸附等温线对Freundlich方程有较好的拟合度。
     采用嗜热四膜虫模型,探讨在水体富营养化治理中三种铁系纳米材料的环境生物安全效应。分别将Fe_3O_4、纳米磁性铁氧化物/β沸石复合体、Fe掺杂型纳米β沸石材料作用于嗜热四膜虫生物模型,采用血球计数法观察不同铁系纳米材料对于嗜热四膜虫生长的抑制作用,并用热台偏光显微镜观察相应嗜热四膜虫形态变化。结果表明:Fe_3O_4对四膜虫抑制作用最强烈;并且嗜热四膜虫的生长抑制率同铁系纳米材料的浓度间存在明显正相关性。
     综合考虑,磁性铁氧化物/纳米β沸石分子筛组装体对磷酸根的吸附效果虽然比纳米磁性Fe_3O_4稍低,但其对四膜虫的影响作用却比纳米磁性Fe_3O_4微弱,其成本也比Fe掺杂型纳米β沸石大大降低。因此将磁性材料和纳米多孔材料相结合的磁性铁氧化物/纳米β沸石分子筛组装体是一种既对磷酸根吸附效果良好,又具有较好生物环境安全性的新型环境功能材料。
Recently, eutrophication has become one of the most significant and worldwide water quality problems. Among many nutrient in water, phosphorus compounds have been revealved as a major cause of eutrophication. Thus, phosphorus should be removed in order to avoid eutrophication.
     Three kinds of nano-sized materials of iron were selected and the synthetic conditions of these compound adsorbents have been studied in this paper, and the main influence factors on the phosphates removal capacity have been discussed too.The effect of adsorption time on the removal of phosphate by nano-sized materials of iron was discussed. Equilibrium time of removing phosphate by Fe_3O_4 was about 5h,while equilibrium time of removing phosphate by magnetic iron oxide-βzeolite composite and iron-spikedβzeolite were about 6h. And the optimum pH value of phosphate removal was between 3-5. The phosphate adsorption capability of different nano-sized iron materials was compared. The saturated absorption amount of Fe_3O_4 was the biggest, while the saturated absorption amount of iron-spikedβzeolite was the smallest. Result also showed that the adsorption process of nano-sized materials of iron for phosphorus accords with the Freundlich isotherm.
     A study of biological environmental safety effect of nano-sized iron materials including Fe_3O_4, magnetic iron oxide/βzeolite composite and iron-spikedβzeolite using a tetrahymena thermophila model were studied by hemocytometer measurement. We used polarizing microscope to observe configuration changes of tetrahymena thermophila. Results show that: magnetic nano-sized Fe_3O_4 is the most sensitive to the suppression of the grouth of tetrahymena thermophila, as compared with the magnetic iron oxide/βzeolite composite and iron-spikedβzeolite. Also, the growth suppression of tetrahymena thermophila was increased with the nano-sized materials of iron concentration.
     Although magnetic iron oxide/βzeolite composite is less effective on the absorption of phosphate than Fe_3O_4, the toxicity of magnetic iron oxide/βzeolite composite was much lower. Meanwhile, the cost of magnetic iron oxide/βzeolite composite was also less than iron-spikedβ zeolite.Therefore, magnetic iron oxide/βzeolite composite, combination of magnetic and nanometer porous material, is a novel environment functional material, which can provide the best performance of removing phosphorus and has a good safety on biological environment.
引文
[1] 张智, 林艳, 梁健.水体富营养化及其治理措施.重庆环境科学,2002,24 (3):13-19
    [2] 韩沙沙,温琰茂.富营养化水体沉积物中磷的释放及其影响因素.生态学杂志,23 (2):34-35
    [3] 李慧韫,张天胜.磷和水体富营养化.日用化学用品科学,2002,25 (5):29-32
    [4] 林晓,刘婧,徐厚坤.富营养化水体磷的控制方法初探.城镇供水,2003 (2):32-36
    [5] L Q.Xie, P Xie. Enhancement of dissolved phosphorus release from sediment to lake water by Microcystis blooms - an enclosure experiment in a hyper – eutrophic, subtropical Chinese lake.Environmental Pollution,2003 , 122 (3):29-32
    [6] M.Dokulil, W Chen, Q.Cai. Anthropogenic impacts to large lakes in China : the TaiHu example.Aquatic Ecosystem Health and Management, 2000, 3 (1):35-39
    [7] 李红山,黎松强.水体富营养化的生化防治机理—污水深度处理与脱氮除磷.海洋科学,2002,26 (6):32-35
    [8] 吴燕,安树林.废水除磷方法的现状与展望.天津工业大学学报,2001,20 (1):29-31
    [9] 杨维荣.环境化学.北京:人民出版社,1989.123-245
    [10] 王宝贞,王琳.水污染治理新技术—新工艺、新概念、新理论.北京:科学出版社,2004.17-29
    [11] 郑兴灿,李亚新.污水除磷脱氮技术.北京:中国建筑工业出版社,1998.231-235
    [12] 刘召平,陆少鸣.铁盐同步除磷研究.环境污染治理技术与设备,2003 ,4 (6):16-18
    [13] 王立立,刘焕彬,等.生活污水二级生物处理后的铁盐混凝除磷试验研究.环境污染与防治,2002, 24(6):361-364
    [14] 杨国靖,李小明,等.一体化生物除磷脱氮技术—反硝化除磷.环境科学与技术,2005 ,28(2) :107-109
    [15] 丁文明,黄霞.铁—铈复合除磷剂的合成及高效吸附机理.中国给水排水,2004,20(9):5- 8
    [16] 袁东海,景丽洁,等.几种人工湿地基质净化磷素的机理.中国环境学,2004,24(5):614- 617
    [17] 张荣社,李广贺,等.潜流湿地中植物对脱氮除磷效果的影响中试研究.环境科学,2005,26(4):83-86
    [18]刘春常,夏汉平,等.人工湿地处理生活污水研究—以深圳石岩河人工湿地为例.生态环境,2005,14(4):536-539
    [19] Service R F. Nanomaterials show signs of toxicity. Science, 2003,300 (11): 243-246
    [20] Dowling A, Clift R, Grobert N, et al. Nanoscience and nanotechnologies: Opportunities and uncertainties. London: The Royal Society & the Royal Academy of Engineering Report, Jul 2004, 23(34):236-239
    [21] 喻强,郝保红.纳米粒子的制备方法及应用.北京石油化工学院学报,2003,1(14):61-64
    [22] Wang Hai- fang, Liu Yuan-fang, Zhao Yu- liang, et al. Preparation and biodistribution of labeled water-soluble single-wall carbon nanotubes. Nanosci Nanotech, 2004, 4(8): 1-8
    [23] 谭镜明,谈智勇,吴勘.纳米技术产业化进展.广州化工,2006,3(43):17-19
    [24] 卫星.功能纳米材料研究的新进展.上海金属,2005,27(4):61-62
    [25] Afaq F, Abidi P, Matin R, et al. Cytotoxicity, pro-oxidant effects and antioxidant depletion in rat lung alveolar macrophages exposed to ultrafine titanium dioxide. J Appl Toxicol, 1998, 18:307-312
    [26] Oberd?rster G, Ferin J, Gelein R, et al. Role of the alveolar macrophage in lung injury: studies with ultrafine particles. Environ Health Perspect, 1992, 97: 193-199
    [27] Zhang Q, Kusaka Y, Sato K, et al. Differences in the extent of inflam -mation caused by intraracheal exsposure to 3 ultrafine metals:Role of free radical. Toxicol Environ Health A, 1998, 53(6):423-438
    [28] Osier M, Oberd?rster G. Intratracheal inhalation vs intratracheal instillation: differences in particle effects. Fundam Appl Toxicol, 1997, 40(2): 220-227
    [29] 金一和,孙鹏,张颖花.纳米材料对人体的潜在性影响问题.自然杂志,2001,23 (5):306-307
    [30] Wang Hai-Fang, Liu Yuan-fang, Zhao yu- ling, et al. XPS study of C-I covalent bond on single-walled carbon nanotubes (SWNTs). Acta Phys-Chim Sinica, 2004, 20(7): 673-675
    [31] Jia Guang, Wang Hai-fang, Zhao Yu- liang, et al. Biological activities of carbon nanomaterials: Single wall nanotubes, multi wall nanotubes and fullerene. Environ Sci Technol, 2005
    [32] 张中太,林元华,唐子龙,等.纳米材料及其技术的应用前景[J].材料工程,2000(3):42-48
    [33] Warheit D B, Laurence B R, Reed K L, et al. Comparative pulmonary toxicity assesment of single wall carbon nanotubes in rats.Toxicol Sci, 2004, 77(1): 117-125
    [34] 王翔.纳米材料与健康效应关系的研究进展.国外医学卫生学册,2005,32(1) :1261
    [35] Lam CW, James JT, McCluskey R, et al. Pulmonary toxicity of singlewall carbon nanotubes in mice 7 and 90 days after intratracheal instillation. Toxicol Sci 2004, 77(1):126-134
    [36] Holsapple MP, Farland WH, Landry TD, et al. Research Strategies for Safety Evaluation of Nanomaterials, PartⅡ: Toxicological and Safety Evaluation of Nanomaterials, Current Challenges and Data Needs. Toxicol Sci.2005, 88(1):12-17
    [37] 周炯亮,新世纪毒理学研究的几个热点.卫生毒理学杂志,2000,14(1):3-5
    [38] Kaur S, Clark RDR, Walsh PT, et al. Exposure visualization of ultrafine particle counts in a transport microenvironment. Atmos Environ, 2006, 40: 3862-3981
    [39] Warheit DB, Webb TR, Reed KL. Pulmonary toxicity screening studies in male rats with TiO2 particulates substantially encapsulated with pyrogenically deposited, amorphous silica. Part Fibre Toxicol 2006, 26(3):1-3
    [40] 赵宇亮,柴之芳.纳米生物效应研究进展.中国科学院院刊,2005,20(3):194-199
    [41] 王定国,吴增树,潘瑞谦.氧化镁毒理学研究.职业医学与病伤,1997,12 (4):231-236
    [42] 王二坤,李丽华,高伟.化学元素与人体健康的关系.中华临床与卫生,2003,2 (1):56-57
    [43] 彭任生.镁的生化作用和临床意义.广东微量元素科学,1996,3 (12):8-10
    [44] Renwick LC, Donaldson K, Clouter A. Impairment of alveolar macrophage phagocytosis by ultrafine particles. Toxicol Appl Pharmacol, 2001, 172: 119-127
    [45] Thomas K, Sayre P. Research Strategies for Safety Evaluation of Nanomaterials, Part I: Evaluating the Human Health Implications of Exposure to Nanoscale Materials. Toxicol Sci 2005, 87(2):316- 321
    [46] Hussain SM, Hess KL, Gearhart JM, et al. In vitro toxicity of nanoparticles in BRL 3A rat liver cells.Toxicol In Vitro 2005, 19(7):975-983
    [47] Esquivel E, Murr LE. A TEM analysis of nanoparticulates in a Polar ice core. Mater Charact, 2004, 52 :152-153
    [48] 汪冰,丰伟悦,赵宇亮等.纳米材料生物效应及其毒理学研究进展.中国科学B辑,2005,35(1):1-10
    [49] 柯桂华,高华寿.分析化学实验(第2版).,北京,高等教育出版社,1989
    [50] 国家环境保护总局.水和废水监测分析方法(第4版),北京,中国环境科学出版社,2002
    [51] 邹涛,郭灿雄,段雪.强磁性Fe3O4纳米粒子的制备及其性能表征.精细化工,2002,19(12):707-710
    [52] 哈斯奇木格,李松波等.备沸石基纳米非晶软磁材料的新方法及其磁性.高等学校化学学报,2003,24(9):1633-1636
    [53] 何红运,庞文琴等.合成条件对无铝Fe-β沸石分子筛晶化的影响.高等学校化学学报,2002,23(3):353-357
    [54] 邢伟,黄文敏等.铁盐除磷技术机理及铁盐混凝剂的研究进展.给水排水,2006,32(2): 88-91
    [55] 吴海林,杨开等.废水除磷技术的研究与发展.环境污染治理与设备,2003,4(1):53-57
    [56] 柳萍等.天然沸石在水污染控制中的应用.离子交换与吸附,1996,12(4):378-382
    [57] 郭汉贤.应用化学动力学.北京,化学工业出版社,2003.128-146
    [58] 汪冰,丰伟悦,赵宇亮等.纳米材料生物效应及其毒理学研究进展.中国科学B辑,2005,35(1):1~10
    [59] Jia G, Wang HF, Yan L, et al. Cytotoxicity of carbon nanomaterials: single-wall nanotube, multi-wall nanotube, and fullerene. Environ Sci Technol, 2005, 39: 1378
    [60] Kaganman, I. Harnessing a tiny hairy beast. Nature methods, 2006, 3 (4): 240-241
    [61] 陈小娟,沈韫芬等.利用微量热法研究Cd2+ 和Cu2+ 对嗜热四膜虫(Tetrahymena thermophila) 的毒性效应.应用与环境生物学报,2004,10(6):745~749
    [62] Williams, N. E. Surface membrane regeneration in deciliated Tetrahymena. .J.Cell Sci,2001,62:407-417
    [64] 傅诚杰,俞婷,缪炜.四膜虫:毒理学与生态毒理学研究中的优良模式生物.动物学杂志,2005 ,40(1):108-113
    [64] Sauvant MP, Pepin D, Piccinnt E. Tet rahymena pyrif ormis: a tool for toxicological studies. Chemosphere, 1999, 38(7):1631-1669

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700