用户名: 密码: 验证码:
家蚕丝腺细胞系BmSG-SWU1与丝腺组织部分基因的表达差异研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
家蚕丝腺不但是蚕丝业的基础,而且其高效的蛋白质合成能力可被利用来开发新的生物产业,这被国际上誉为具有广阔应用前景的研究领域。家蚕丝蛋白合成关键基因的功能研究、家蚕丝蛋白合成机理研究和丝腺生物反应器的应用研究都需要家蚕丝腺细胞系作为研究平台,但至今还没有一个基因表达谱清楚的家蚕丝腺细胞系,它已成为制约这些研究的瓶颈。本论文利用家蚕全基因组芯片数据分析、RT-PCR和荧光定量PCR技术对家蚕丝腺细胞系BmSG-SWU1和丝腺组织的特异基因的表达谱以及细胞分裂周期基因的表达谱进行了分析,结果如下:
     1.利用家蚕全基因组芯片对5龄3天雌、雄家蚕的丝腺和其它组织进行了18个丝腺特异表达基因的表达谱分析,芯片数据分析结果显示这些基因在5龄3天的家蚕丝腺组织中的表达量远高于在其它组织中的表达量。这18个基因中包括激素代谢相关蛋白、转运蛋白、蛋白修饰降解类磷酸化酶、脱氢酶及其它几种蛋白,它们可能与丝物质的分泌密切相关。
     2.根据家蚕基因组芯片数据,分析了家蚕中与细胞周期调控相关的16个基因,包括周期蛋白基因Cyclin A、Cyclin B、Cyclin D、Cyclin E、Cyclin H及PCNA,周期蛋白依赖性激酶基因cdc2、Cdk2、Cdk5、Cdk6。这些基因大多在家蚕具有分裂增殖能力的幼虫精巢、卵巢中高量表达,而在处于高度分化状态的丝腺组织中低量表达。雌蛹到蛾的变态过程,也是卵巢减数分裂的旺盛期,这些基因的表达量逐渐变大。结果显示这一组基因与周期调控有关。
     3.家蚕18个丝腺特异表达的基因的RT-PCR表明:在丝腺细胞系BmSG-SWU1中有部分丝腺特异表达基因表达,由此推测它仍然保留了丝腺组织细胞的部分特征。在18个基因中,有12个基因全部表达或都不表达;6个基因有较为明显的组织、细胞差异,其中有2个基因只在丝腺组织中有大量表达,而有3个基因在丝腺组织和丝腺细胞系BmSG-SWU1中的表达量要比精巢、卵巢高,但在BmN-SWU1中几乎不表达,另外有1个基因虽然在各个组织细胞中有表达差异,但差异不不大。
     4.Fib-L和P25在不同组织细胞中的荧光定量PCR结果表明BmSG-SWU1细胞已经丧失了大量表达Fib-L和P25mRNA的能力。丝腺细胞系BmSG-SWU1中Fib-L和P25的表达量仅分别是丝腺组织的0.0013%和0.0048%,卵巢细胞系BmN-SWU1中Fib-L和P25的表达量分别是丝腺组织的0.0016%和0.0055%。两个细胞系表达这两个基因的水平基本一致,均远远低于丝腺组织的表达量。
     5.预测的家蚕周期调控基因在家蚕不同组织和细胞系的RT-PCR结果表明:Bmcyclin D2、Bmcyclin EI、BmCyclin A1、BmCyclinx(含有Cyclin box的未知周期蛋白基因)等四个周期蛋白基因在卵巢、丝腺、BmSG-SWU1、BmN-SWU1中都有较强的表达,而BmCyclinB和BmCyclinB3在丝腺组织中不表达。BmPCNA在四个组织、细胞内都有表达。这些结果暗示BmSG-SWU1细胞系重新启动了周期调控基因,以有丝分裂的方式进行细胞增值,而丝腺组织则是核内有丝分裂。
     家蚕丝腺细胞系BmSG-SWU1经过长期的体外培养,已经从核内有丝分裂状态突破G2/M关键控制点重新进入了细胞有丝分裂周期,该细胞系虽失去了高量表达丝素基因Fib-L、P25的能力,但仍旧保留着表达原丝腺组织部分特异基因的能力,是一个保留了丝腺组织细胞的部分特征的细胞系
The silk gland of silkworm is not only the foundation of silk industry, but also provides us its high effective protein-synthesis function which can be developed to be a new biological industry, so it is honored for its broad applification in research field. A silk gland cell line is essential for us to perform series of reseaches such as the functional investigation of key Fibroin synthesizing genes, the investigation of mechanism about Fibroin synthesizing, and the investigation of silk gland as a biological reactor. However, there is not any cell line whose expression profile is very clear, which has become the bottleneck of those studies. This experiment investigate the genic expression profile of cell line BmSG-SWU1, silk gland specific genes and genes of cell spliting cyclin through whole genome microarray, normal RT-PCR, and fluorescent quantitative PCR (FQ-PCR) analysis, we obtain some results as follows:
     1. To analysis the expression profile of eighteen genes which are expressed special highly in silk gland, we utilized the whole genome microarray data for silk glands and other tissues of male and female silkworms in day 3 of fifth instar, and the results showed that the expression quantity of 18 genes in silk gland was outclass compared with other tissues. And these eighteen genes contains Hormone-metabolism-related protein, Transporter, Protein-modified degradation phosphorylase, Dehydrogenase and other kinds of proteins, which maybe closely relate to the secretion of Fibroin.
     2. According to the microarray data for silk glands, we analysed sixteen genes relating to cell cycle controlling, which contained CyclinA, CyclinB, CyclinD, CyclinE, CyclinH, PCNA and Cyclin-dependent kinase cdc2, Cdk2, Cdk5, Cdk6. These genes will be highly expressed mostly in spermary and ovary which have ability to split and multiply in silkworm, but will be lowly expressed in silk gland which has been highly differentiated. The course from female-pupa to moth, is also the exuberant phase of miosis in ovary, meanwhile the expression quantity of these genes gradually largen. So the result shows that these genes correlated with cycle controlling.
     3. An RT-PCR analyse was performed to analysis eighteen silk-gland-specific genes, and it showed that in the silkgland celline BmSG-SWUl,severeal silk-gland-specific genes were detected, it reveal that BmSG-SWU1 may preserve some characteristics of silk gland cell. Among the eighteen genes, twelve of them were all expressed or none were expressed; six genes showed a different expression profile between tissue and cell, two of them were highly expressed only in silk gland tissue, three of them had higher expression quantity in silk gland and BmSG-SWU1 than those in spermary and ovary, however, they were hardly expressed in BmN-SWU1, and another one was Bmb001492, whose expressions were ubiquitous among the tested tissues.
     4.The result of FQ-PCR of Fib-L and P25 in different ceils of tissue suggested that, the ceils of BmSG-SWU1 had lost the ability to highly express the Fibroin gene Fib-L and P25. The expression quantity of Fib-L and P25 in silk gland cell line BmSG-SWU1 was only about 0.0013% and 0.0048% respectively compared with that of silk gland; meanwhile that quantity in the ovary cell line BmN-SWU1 was only 0.0016% and 0.0055% respectively. And these suggest that, the expression quantity of these two genes in these two cell lines are nearly consistent, which are far below that of silk gland.
     5. Then result of RT-PCR about the forecasted silkworm cycle-controlling genes in different tissues and cell lines showed that, the four cyclin genes BmCyclinD2、BmcyclinEI、BmCyclinAl BmCyclinAl had high expression in ovary, silk gland, BmSG-SWU1 and BmN-SWU1, while BmCyclinB and BmCyclinB3 were not expressed in silk gland. Meanwhile, BmPCNA was expressed in these four cDNAs. All the results above suggest that the cell line BmSG-SWU1 has restarted the cycle-controlling genes, and it performs multiplication with mitosis while that of silk gland tissue is endoreduplication.
     In summary, the cell line of silkworm BmSG-SWU1 passed through long-term cultivated in vitro, they have breakthrough the key point in G2/M from endoreduplication, and returned to a mitostic cycle. Meanwhile, this cell line has lost the ability to highly express the Fibroin gene Fib-L、P25, but has reserved the function of expressing some special genes in former silk gland, and it is a cell line which preserves some characteristics of cells in silk gland.
引文
[1]Ikonomou L,Schneider Y J,Agathos S N.Insect cell culture for industrial production of recombinant proteins.Appl Microbiol Biotechnol,2003,62(1):1-20
    [2]Miller L K.Baculovirus as gene expression vectors.Annu Rev Microbiol,1988,42(1):177-199
    [3]Huynh C Q,Zieler H.Construction of modular and versatile plasmid vectors for the high-level expression of single or multiple genes in insects and insect cell lines.J Mol.Biol.,1999,288(1):13-20
    [4]Huang Y,Tian R,Hu W,et al.Expression and Secretion of Functional Recombinant scu-PA:AV in Insect Cell Using Signal Peptides Protein Pept.Lett.2004,11(1):49-55
    [5]Guttieri M C,Liang M. Human antibody production using insect-cell expression systems.Methods Mol.Biol.2004,248:269-299
    [6]Grace T D C.Establishment of four strains of cells from insect tissue grown in vitro.Nature.1962,195:788-789
    [7]Dwight E.Methods for Maintaining Insect Cell Culture.Journal of Insect Science.2002,2(9):1-6.
    [8]Lyrm D E,Novel techniques to establish new insect cell lines.In Vitro Cell Dev Biol Anim,2001,37(6):319-321
    [9]Palomares L A,Joosten C E,Hughes P R,et al.Novel insect cell line capable of complex N-glycosylation and sialylation of recombinant proteins.Biotechnol Prog,2003,19(1):185-192
    [10]Edgar B A.Orr-Weaver T L.Endoreplication Cell cycles:More for Less.Cell,2001,105(3-4):297-306
    [11]普孝英,洪锡钧,陈敏等.BmN细胞有丝分裂及其染色体的研究.蚕业科学,2003,29(2):136-141
    [12]彭建新,余泽华,黎路林.家蚕NPV在传代细胞中的复制.华中师范大学学报(自然科学版),1989,23(4):541-545
    [13]Min-HuiPan,Shi-QuanXiao,Min Chen, et al.Establishment and characterization of two enbryonic cell lines of Bombyx mori In Vitro Cell.Dev.Biol-Animal,2007,DOI 10.1007/s 11626-006-9009-x
    [14]潘敏慧,陈敏,丁裕斌等.家蚕胚胎细胞系BmE-SWU2的建立及其生物学特性研究.昆虫学报,2006,49(50):719-725
    [15]潘敏慧,肖仕全,洪锡钧等.家蚕胚胎细胞系BmE-SWUl的建立及生物学特征.细胞生物学杂志,2005,27:708-712.
    [16]冯振月.家蚕丝腺细胞系BmSG-SWUl的建立及其RAPD和ISSR的指纹图谱分析.重 庆:西南大学硕士论文,2006:47-51
    [17]李兵,沈卫德.家蚕和野蚕细胞系研究进展.中国蚕业,2002,23(4):67-69
    [18]肖仕全.家蚕类浓核病毒的细胞毒理学研究及家蚕胚胎细胞系SWAUI.BmE的建立.[硕士论文].重庆:西南农业人学,2004:53-54
    [19]陈敏.家蚕胚胎细胞系的建立及其RAPD和SSR的研究.[硕士论文].重庆:西南农业大学,2005:38-40
    [20]向仲怀,黄君霆,夏建国,等.蚕丝生物学,北京:中国林业出版社,2005,288-296
    [21]明镇寰,唐愫.家蚕后部丝腺遗传物质的研究.遗传,1983,5(6):5-8
    [22]Inoue,S.,K.Tanaka,E Arissaka,et al.Silk Fibroin of Bombyx mori is secreted,assembling a high molecular mass elementary unit consisting of H-chain,L-chain, and P25,with a 6:6:1 molar ratio.J.Biol.Chem.,2000,275(51):40517-40528
    [23]Wage S,Mizuno S.Different behavior of chromatin domains encompas sing Fibroin heavy-china gene in active,temporarily inactive,and permanently inactive transcriptional states in silk gland.Nuclei.J.Bio.Chem.,1993,268:6429-6436
    [24]Couble P.Chevillard M,Morine A,et al.Structural organization of the P25 gene of Bombyx mori and comparative analysis of its 5'flanking DNA with that of the Fibrion gene.Nucl.Acides Res.1985,13:4801-1816
    [25]Adams M D,Kelley J M,Gocayne J D,et al.Complementary DNA Sequencing:Expressed sequence tags and human genome project.Scienee.,1991.,252(5013):1651-1656
    [26]Xia Q,Zhou Z,Lu C,et al.A Draft Sequence for the Genome of the Domesticated Silkworm( Bombyx mori).Science,2004,306:1937-1940
    [27]程道军,夏庆友.家蚕cDNA文库构建及大规模EST测序.蚕业科学,2003,29(4):335-339
    [28]钟伯雄,余迎朴,徐豫松等.家蚕五龄幼虫后部丝腺细胞EST的测序和基因表达谱分析.中国科学(C辑),2004,34(5):436-443
    [29]刘春.家蚕丝腺表达谱及丝素结构基因转录调控研究.[博士论文].重庆:西南大学,2006,37-40
    [30]Kimura K,Oyama F,Ueda H,et al.Molecular cloning of the Fibroin light chain complementary DNA and its use in the study of the expression of the light chain gene in the posterior silk gland of Bombyx rnori.Experientia,1985,41:1167-1171
    [31]刘春,赵萍,程廷才等.家蚕Fhx/P25基因的~种新转录模式分析研究.生物化学与生物物理进展,2005,32(8):740-746
    [32]郑国铝.细胞生物学(第二版).北京:高等教育出版社,1992:408-409
    [33Pringle J,Hartwell,L.in The Molecular Biology of the Yeast Saccaromyces:Life Cycle and Inheritance.1981 97-143.
    [34]Nures P,In Furgal Nucleus.K,cull&Oliver,et al,1981,331-345.
    [35]EvansT,Rosenthal E T,Youngblom J,et al.CyclinA proteins pecified by maternal mRNA in sea urchin eggs that is destroyed at each cleavage division.Cell,1983,33:389-396.
    [36]Steinberg J,Haglund K.The Landmark Interviews.The J.NIH Reasearch,1993,5:63-74
    [37]Kirschner M.Tne cell cycle then and now.Tredns Biochern Sci,1992,17:281-285.
    [38]Nasmyth K,Hunt T.Dams and sluices.Nature,1993,366:634-635
    [39] Hunter T.Braking the cycle.Cell.1993,75:839-841.
    [40]Hengst L,Dulic V,Slingerland J,et al.A cell cycle regulated inhibitor of cyclin-dependent kinases.Proc Natl Acad Sci USA,1994,91:5291-5295
    [41]Toyoshima H,Hunter T.P27,a novel inhibitorof GI cyclin-cdk protein kinase acticity,is related to cell.Cell,1994,78:67-74
    [42]杨兆颖,李金梁.细胞周期及其周期调控研究的发展简史.中华医史杂志,2004,34(3):176-179
    [43]高燕林,莉萍,丁健细胞周期调控的研究进展.生命科学,2005,17(4):318-322
    [44]Sherr C J,Roberts J M.Cdk inhibitors:positive and negative regulators of G1 phase progression.Genes Dev,1999,13:1501-1512
    [45]Hunter T,Pines J.Cyclins and cancer Ⅱ:CyclinD and Cdk inhibitors come of age.Cell,199479(4):573-582
    [46]Labbe J C,Picard A,Peaucellier G,et al.Puification of MPF from starfish:identification as the H1 histone kinase p34cdc2 and a possible mechanism for its periodic activation.Cell,1989,57:253 -263
    [47]李冬玲.细胞周期调控的分子机制.潍坊学院学报,2005,5(6):85-89
    [48]John P C L.Cytokinin stimulation of cell division:essential signal transduction is via Cdc25 phosphatage.J Exp Bot,1998,49(suppl):91
    [49]Morgan D O.Principles of Cdk regulation.Nature,1995,374:131-134
    [50]Serrano M,Harmon G J,Beach D A.New regulatory modifying cell-cycle control causing specific inhibition of cyclinD/Cdk4.Nature,1993,366(6456):704-770
    [51]ZHOU P,JIANG W,ZHANG Y J,et al.Antisense to cyclinD 1 inhibits growth and reverses the transformed phenotype of human esophageal cancer cells.Oncogene,1995,11(3):571-580
    [521Ohtsubo M,Theodoras A M,Schumacher J,et al.Human cyclin E,a nuclear protein essentail for the Gl-to-S phase transition. Mol Cell Biol,1995,15:2612-2624
    [53]Labbe J C,Lee M G,Nurse P,et al.Activation at M-phase of a protein kinase encoded by a starfish homologue of the cell cycle control gene cdc2+.Nature.1988,335(6187):251-254.
    [54]Cardoso M C,Leonhardt H,Nadal-Ginard B.Reversal of terminal differentiation and control of DNA replication:cyclin A and Cdk2 specifically localize at subnuclear sites of DNA replication.Cell.1993,74(6):979-992
    [55]King R W,Jackson P K.Kirschner M W.Mitosis in transition.Cell,1994,79:563-571
    [56]Gulbis J M,Kelman Z,Hurwitz J,et al.Structure of the C-terminal region ofp21(WAF1/CIP1) complexed with human PCNA.Cell,1996,87:297-306
    [57]R.j.Sheaff,J.M.Roberts.Regulation of G1 phase.Cell Cycle Control,Springer Press.1998:7-10
    [58]吴宁华.细胞周期的基因调控.北京:高等教育出版社.1996,149-157
    [59]Schrnelzle T,Hall M N.TOR,a central controller of cell growth.Cell,2000,103:253-262
    [60]吴家睿.细胞周期的驱动及其调控.科学通报,2002,47:805-811
    [61]PinesJ.Cyclins and cyclin-dependent kinase a biochemical view.Biochem J.1995,308:679-711
    [62]Galgolay D J,Tockyski D P.Checkpoint adaptation precedes spontaneous and damage-induced genomic in-stability in yeast.Mol Cell Biol,2001.21(5):1710-1718
    [63]White,M J D.Animal Cytology and Evolution,Third Edition(Cambridge:Cambridge University Press),1973
    [64]Smith A V,Orr-Weaver T L.The regulation of the cell cycle during Drosophila embryogenesis-the transition to polyteny.Development,1991,112:997-1008
    [65]Sauer K,Knoblich J A,Richardson H,et al.Distinct modes of cyclin E/cdc2c kinase regulation and S-phase control in mitotic and endoreduplication cycles of Drosophila em-bryogenesis.Genes Dev,1995,9:1327-1339
    [66]Knoblich J A,Sauer K,Jones L,et al.Cyclin E controls S phase progression and its down-regulation during Drosophila embryogenesis is required for the arrest of cell proliferation.Cell,1994,77:107-120
    [67]Royzman I,Whittaker A J,Orr-Weaver T L.Mutations in Drosophila DP and E2F distinguish G1-S progression from an associated transcriptional program.Genes Dev,1997,11(15):1999-2011
    [68]Britton J S,Edgar,B A.Environmental control of the cell cycle in Drosophila:nutrition activates mitotic and endoreplica- tive cells by distinct mechanisms.Development,1998,125:2149-2158
    [69]Follette P J,Duronio R J,O'Farrell P H.Fluctuations in cyclin E levels are required for multiple rounds of endocycle S phase in Drosophila.Curr.Bio1,1998,8:235-238.
    [70]Weiss A,Herzig A,Jacobs H,et al.Continuous Cyclin E expression inhibits progression through endoreduplication cycles in Drosophila.Curr.Biol,1998,8:239-242
    [71]Hua X H,Yan H,Newport J.A role for Cdk2 kinase in negatively regulating DNA replicationduring S phase of the cell cycle.J Cell Biol,1997,137:183-192
    [72]Pedrix-Gillot S DNA synthesis and endomitosis in the giant nuclei of the silkgland of Bombyx mori.Biochimie,1979,61:171-204
    [73]Gage L P.Polyploidization of the silk gland ofBombyx mori.JMolBiol,1974,86:97-108
    [74]Niranjanakumari S,Gopinathan K P.DNA polymerase-d from the silkglands ofBombyx mori.J Biol Chem,1992,267:17531-17539
    [75]Baluchamy Sudhakar Expression of cyclin E in endomitotic silkg-land cells from mulberry silkworm.Gene,2000,257:77-85
    [76]Pines J, Hunter T. Human Cyclins A and B1 are differentially located in the cell and undergo cell cycledependent nuclear transport.J Cell Biol,1991,115:1-17
    [77]Reed S I.The role of p34 kinases in the G1 to S phase transition.Annu Rev Cell Biol,1992,8:529-561
    [78]Sherr C.G1 phase progression:cycling on cue..Cell,1994,79:551-555
    [79]Duronio R J,O'Farrell P H,Xie J E,et al.The transcription factor E2F is required for S phase during Drosophila embryogenesis.Genes Dev,1995,15:1445-1455
    [80]Fang F,Newport J W.Distinct roles of cdk2 and cdc2 in RPA phosphorylation during the cell cycle.J Cell Sci,1993,106:983-994
    [12]Knoblich J,Lehner C F.Synergistic action of Drosophila cyclins A and B during the G2-M transition.EMBO J,1993,12:65-74
    [82]Dhawan S,Gopinathan K P.Cell cycle events during the development of the silk glands in the mulberry silkworm Bombyx mori.Dev Genes Evo1200 3,213 (9):435-444
    [83]Edgar B A,Orr-Weaver T L.Endoreplication cell cycles:more for less.Cell 2001,105:297-306
    [84]Takhashi M,Niimi.Cloning of B-type cyclin form Bombyx mori and the profiles of its rnRNA level in nodiapause and diapause eggs.Dev.Genes Evol,1996,206:288-291
    [85]Matsunami K,Kokubo H,Ohno K,et al.Embryonic silk gland development in Bombyx:molecular cloning and expression of the Bombyx trachealess gene.Dev Genes Evol,1999,209:507-514
    [86]Shannon J.Kollhoff O A.Deffierentiation of Mammalian Myotubles induced by rnsxl.Cell,2000,103:1099-1109
    [87]张洪渊.生物化学教程(第二版).成都:四川大学出版社.332-336
    [88]周思红.运动与GLU74.中国运动医学杂志,2002,11 21(6):594-597

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700