用户名: 密码: 验证码:
毛细管电泳在中药及其煎煮液分析中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
  • 英文题名:The Study and Application of CE in the Analysis of Traditional Chinese Medicines and Their Decoctions
  • 作者:丁秀萍
  • 论文级别:硕士
  • 学科专业名称:分析化学
  • 学位年度:2008
  • 导师:陈宏丽
  • 学科代码:070302
  • 学位授予单位:兰州大学
  • 论文提交日期:2008-05-01
摘要
中药成分复杂,分析其有效成分比较困难。如何保证药品质量、提高药物疗效是亟待解决的问题。为了控制药物质量,发现新的药物有效成分,越来越多的分析手段已用于分离和分析中药的活性成分。近年来对中药煎煮过程中有效成分的研究已取得了很大的进步,但距现代化的要求还有很大的差距。毛细管电泳(Capillary electrophoresis,CE)是一种新型的分离分析技术,具有高效、快速、进样体积小、可选择的分离模式多、方法简单等优点;而流动注射和毛细管电泳联用技术(Flow injection-capillary electrophoresis,FI-CE)是近几年研究的热点,在进样和样品预处理方面有强大的优势。鉴于这种情况,本论文从理论和方法上开展了毛细管电泳在中药及其煎煮液分析方面的研究工作。
     本论文第二部分充分利用毛细管电泳及流动注射-毛细管电泳联用的优势,对中药浸泡和煎煮过程中活性组分的浓度变化进行了测定,取得了以下几方面创新性的研究成果:
     1.建立了同时分离中药甘草根中的甘草次酸和甘草酸的自由溶液毛细管电泳新方法。并且将该方法用于离线测定甘草根浸泡和煎煮过程中不同时间时甘草次酸和甘草酸的含量变化。
     2.利用FI高精度进样和强大的样品预处理能力,首次将在线过滤和冷却装置与FI-CE联用,并应用到中药甘草根煎煮过程中有效成分浓度的动态变化研究。
     3.将微乳液毛细管电动色谱用于中药蛇床子中欧前胡素和蛇床子素的分离与测定,结果令人满意。
     本论文共分为三部分五章:
     第一部分:综述
     第一章:简单介绍了CE的原理和特点、毛细管电泳在中药及其煎煮液分析中的应用。
     第二部分:毛细管电泳在中药活性成分分析中的应用
     第二章:建立了同时分离测定甘草根中甘草次酸和甘草酸的自由溶液毛细管电泳新方法。最佳分析条件为:10 mM硼砂,pH 8.80,分离电压20 kV,检测波长254 nm。该方法已用于甘草根离线浸泡和煎煮过程中甘草次酸和甘草酸含量的变化研究,并获得了最佳浸泡和煎煮时间,而且对其它中药煎煮过程中有效成分含量的研究也具有重要的参考价值。
     第三章:通过FI强大的样品预处理能力,实现了样品的在线过滤和冷却,建立了一种在线监测甘草根煎煮过程中有效成分动态变化的新方法。最佳分析条件为:10 mM硼砂,pH 8.80,分离电压为10 kV,检测波长为268 nm。通过对甘草根煎煮液的在线监测,得到了甘草根的最佳煎煮时间,而且发现在甘草根煎煮过程中,没有新成分出现,原有的成分也没有消失。将该方法进行改善,可用于其它中药煎煮过程中活性成分的在线测定。
     第四章:建立了一种简单、快速、灵敏、准确的微乳液毛细管电动色谱法,同时测定了中药蛇床子中的欧前胡素和蛇床子素。最佳分析条件为:20 mM Tris,20%(v/v)微乳(16.55%(w/v)SDS+40.75%(v/v)正丁醇+5.85%(v/v)正庚烷+36.85%(v/v)水),分离电压15 kV,检测波长254 nm。
     第三部分:毛细管电泳在手性分离中的应用
     第五章:建立了一种简单、灵敏、准确的自由溶液毛细管电泳新方法,用β-CD为手性选择试剂,分离了盐酸帕洛诺司琼对映体。最佳分析条件为:30 mMNaH_2PO_4,10%甲醇,150 mMβ-CD,pH=3.0,分离电压为15 kV。
Natural medicinal resources provide valuable material for the discovery and development of new drugs of natural origin. The large numbers of other components in traditional Chinese medicines (TCMs) make the screening and analysis of the bioactive components extremely difficult. In the past decades, many effective analysis tools have been used for analyzing the components of TCMs in order to control the quality and discover bioactive compounds. Capillary electrophoresis (CE) is a new analysis technology. It provides advantages in terms of higher efficiency, faster separation time, less injected sample volume and more practicable operating modes. The advantages of the combined flow injection with capillary electrophoresis (FI-CE) system have been demonstrated not only to produce an efficient and reliable mode of sample introduction with improved throughput and precision and outstanding reproducibility of retention time, peak area and peak height, but also to provide on-line sample pretreatment ability. In the second part of this dissertation, the advantages of CE and FI-CE were made use of to separate and determinate active components in the decoction of Glscyrrhiza uralensis Fisch.
     On the basis of the previous literatures, in this dissertation, some original studies are carried out as followings:
     1. A novel method based on capillary zone electrophoresis (CZE) was developed for determining glycyrrhetinic acid (GTA) and glycyrrhizic acid (GA) in Glycyrrhiza uralensis Fisch root. This method has also been successfully applied to determine the optimum time of the steeping process and decocting process of Glycyrrhiza uralensis Fisch root.
     2. The flow injection-capillary electrophoresis (FI-CE) system was used in connection with an on-line decoction system to automatically monitor glycyrrhetinic acid (GTA) and glycyrrhizic acid (GA) in the decoction process of Glycyrrhiza uralensis Fisch root for the first time.
     3. A novel microemulsion electrokinetic chromatography (MEEKC) method was established for simultaneous determination of Imporation and Osthol in the medicinal plant Fructus Cnidii.
     This dissertation consists of three parts and five chapters.
     Part I Review of the development of capillary electrophoresis and application of CE in Traditional Chinese Medicines and their decoctions.
     Chapter 1: The principle and characteristics of CE were simply described. The application of CE in study of TCMs and the application of analytical methods in the decoction of TCMs were reviewed and discussed in details.
     Part II Study and application of CE in the bioactive components of Traditional Chinese Medicines.
     Chapter 2: A fast, sensitive and precise analytical method based on CZE was developed for determining glycyrrhetinic acid (GTA) and glycyrrhizic acid (GA) in Glycyrrhiza uralensis Fisch root. This analysis was carried out with 10 mM borate (adjusted to pH 8.8) as a background electrolyte. The separation was achieved in 5 min. This method has also been successfully applied to determine the optimum time of the steeping process and decocting process of Glycyrrhiza uralensis Fisch root.
     Chapter 3: The FI-CE system was used in connection with an on-line decoction system to automatically monitor glycyrrhetinic acid (GTA) and glycyrrhizic acid (GA) in the decoction process of Glycyrrhiza uralensis Fisch root. The separation of GTA and GA took less than 5 min by using a 10 mM borate buffer (adjusted pH to 8.8). The dynamic changes of GTA and GA on the decoction time were obtained in the on-line decoction process of Glycyrrhiza uralensis Fisch root.
     Chapter 4: A rapid and effective MEEKC method was established for simultaneous determination of Imporation and Osthol in the medicinal plant Fructus Cnidii. After optimization of separation conditions, baseline separation was obtained for the two analytes within 20 min using a running buffer composed of 20 mMTris +20% (v/v) microemulsion stock solution(16.55%(w/v) SDS + 40.75%(v/v)l-butanol + 5.85%(v/v) n-heptane + 36.85%(v/v) water). The proposed method is a good alternative for simultaneous analysis of coumarins compounds in other medicinal plants.
     Part III Study and application of CE in enantioseparation of four stereoisomersof palonosetron.
     Chapter 5: The enantioseparation of four stereoisomers of palonosetron hydrochloride by CZE usingβ-CD as chiral selector was described for the first time.β-CD was shown to be effective in separating palonosetron hydrochloride stereoisomers. Baseline separation of palonosetron hydrochloride stereoisomers was achieved within 35 min using a running buffer composed of 30 mM NaH_2PO_4+10% (v/v) methol+150 mMβ-CD(adjusted pH to 3.0)
引文
[1]Hjerten S.Free zone electrophoresis[J].Chromatogr.Rev.,1967,9:122-129.
    [2]Mikkers FEP,Everaerts FM,Verheggen Th PEM.High-performance zone electrophoresis[J].J Chromatogr,1979,169:11-20.
    [3]Jorgenson JW,Lukas KD.Zone electrophoresis in open-tubular glass capillaries[J].Anal Chem.,1981,53:1298-1302.
    [4]Hjerten S.High-performance electrophoresis:the electrop-horesis counterpart of high-performance liquid chromatography[J].J Chromatogr,1983,270:1-6.
    [5]Hjerten S,Zhu MD.Adaptation of the equipment for high-performance electrophoresis to isoelectric-focusing[J].J Chromatogr,1985,346:265-270.
    [6]Terabe S,Ichikawa,K.Electrokinetic separations with micellar solutions and open-tubular capillaries[J].Anal Chem.,1984,56:111-113.
    [7]Lauer HH,Mcmanigill D.Capillary Zone Electrophoresis of Proteins in Untreated Fused Silica Tubing[J].Anal Chem.,1986,58:166-170.
    [8]Pietta P,Mauri R,Maffei-Facino,et al.Analysis of flavonoids by MECC with Ultraviolet array detection[J].J.Pharm.Biomed.Anal.,1992,10:1041-1045.
    [9]Ma Y,Zhang R,Cooper CL.Indirect photometric detection of polyamines in biological samples separated by high-performance capillary electrophoresis[J].J Chromatogr,1992,608:93-96.
    [10]Zhang R,Cooper CL,Ma Y.Determination of Total Polyamines in Tumor Cells by High-Performance Capillary Zone Electrophoresis with Indirect Photometric Detection[J].Anal Chem.,1993,65:704-706.
    [11]Tomas-Barberan FA.Capillary electrophoresis:a new technique in the analysis of plant secondary metabolites[J].Phytochemical Analysis,1995,6:177-192.
    [12]Liang R,Sirena H,Reikkola ML,et al.Optimized separation of pharmacologically active flavonoids from Epimedium species by capillary electrophoresis[J].J.Chromatogr.A,1996,746:123-129.
    [13]Bjergegaard C,Michaelsen S,Sorensen H.Determination of phenolic carboxylic acids by micellar electrokinetic capillary chromatography and evaluation of factors affecting the method[J].J Chromatogr,1992,608:403-411.
    [14]Kuhn R,Hoffstetter-Kuhn S.Capillary Electrophoresis:Principles and Practice,Springer,New York,1993,pp.1.
    [15]Fernandez-de-Simon B,Estrella I,Hernandez T.Flavonoid separation by capillary electrophoresis.Effect of temperature and pH[J].Chromatographia,1995,41:389-392.
    [16]Michaelsen S,Moiler P,Sφrensen H.Factors influencing the separation and quantitation of intact glucosinolates and desulphoglucosinolates by micellar electrokinetic capillary chromatography[J].J Chromatogr,1992,608:363-374.
    [17]Morin P,Dreux M.Factors influencing the separation of ionic and nonionic chemical natural compounds in plant extracts by capillary electrophoresis[J].J.Liq.Chromatogr,1993,16:3735-3755.
    [18]Ng CL,Ong CP,Lee HK,et al.Systematic optimization of micellar electrokinetic chromatographic separation of flavonoids[J].Chromatographia,1992,34:166-172.
    [19]S.W.Sun,L.Y.Chen.Optimization of Micellar Electrokinetic Chromatographic Separation of Aporphine Alkaloids By Overlapping Resolution Mapping[J].J.Liq.Chromatogr.Related Technol.,1998,21:1613-1627.
    [20]Weston A,Brown PR.HPLC and CE:Principles and Practice,Academic Press,New York,1997,p.134.
    [21]Jin Y,Luo GA,Tang YH,et al.Microfabrication of intergrated capillary electrophoresis chips and on-chip sample injection and separation[J].J.Anal.Sci.(分析科学学报),2001,17:148-152.
    [22]Jin Y,Luo GA.Fabrication and application of an interface to couple microfludic chips with electrospray ionization mass spectrometer[J].Anal.Instrum.(分析仪器),2003,2:4-10.
    [23]Jin Y,Luo GA.Fabrication of the microfluidic chips with integrated ultra-micro electrodes and its application in onchip electrochemical detection[J].Chem.J.Chin.Univ.(高等化学学报),2003,24:1180-1184.
    [24]Jin Y,Wen T,Wang YM,et al.Development and application of the detection technologies of integrated capillary electrophoresis chips[J].Mod.Sci.Instr.(现代科学仪器),2001,4:15-17.
    [25]Jin Y,Luo GA,Wang RJ.Development of integrated capillary electrophoresis chips[J].Chin.J.Chromatogr.(色谱),2000,18:313-317.
    [26]Roddguez I,Jin L J,Li SFY.High-speed chiral separations on microchip electrophoresis devices[J].Electrophoresis,2000,21:211-219.
    [27]李立文,吕圭源.高效毛细管电泳技术与现代中药[J].时珍国医国药,2005,16(9):922-923.
    [28]全亚君.高效毛细管电泳在中药分析中的应用[J].中国药物与临床,2007,7(1):58-60.
    [29]Reddy MM,Suresh V,Jayashanker G,et al.Application of capillary zone electrophoresis in the separation and determination of the principal gumopium alkaloids[J].Electrophoresis,2003,24:1437-1441.
    [30]季一兵,陈玉英,吴如金.麻黄中生物碱类有效成分的非水毛细管电泳含量测定[J].中草药,2003,34:1127-1129.
    [31]孙莲,孟磊,陈坚等.毛细管电泳测定桑叶中的黄酮类成分芦丁和槲皮素[J].色谱,2001,19:395-397.
    [32]Marek U,Lucie B,Marie P I,et al.On-line coupling of capillary isotachophoresis and capillary zone electrophoresis for the determination of flavonoids in methanolic extracts of Hypericum perforatum leaves or flowers[J]. J.Chromatogr.A,2002,958:261-271.
    [33]张继友,李前锋,潘仲巍等.毛细管胶束电动色谱测定大黄及复方制剂中蒽醌化合物[J].兰州大学学报(自然科学版),2003,39:101-102.
    [34]Shang XY,Yuan ZB.Determination of hydroxyanthraquinoids in Rhubarb by cyclodextrin-modified micellar electrokinetic chromatography using a mixed micellar system of sodium dodecyl sulfate and sodium cholate[J].J..Pharm.Biomed.Anal.,2003,31:75-81.
    [35]Wang SF,Ju Y,Chen XG,et al.Identification and determination of ecdysones and flavonoids in Serratula strangulate Iljin by micellar electrokinetie capillary chromatography[J].Planta Medica,2003,69:483-486.
    [36]沈红梅,乔传卓,芮中武等.乌梅中主要有机酸的定量动态分析[J].中国药学杂志,1995,30:133-135.
    [37]袁海龙,贺承山,肖小河等.高校毛细管电泳测定何首乌中二苯乙烯甙的含量[J].解放军药学学报,2000,16:151-154.
    [38]Liu SH,Tian X,Chen XG,et al.Separation and determination of podophyllum lignans by micellar electrokinetie chromatography[J].J..Chromatogr.A,2001,928:109-115.
    [39]耿越,赵相轩,花义山,吴金恩.高校毛细管电泳法测定蜂蜜中单糖的含量[J].食品科学,2002,23:114-116.
    [40]阮婧华,孙毓庆.毛细管区带电泳法同时测定冬虫夏草中的多种核苷及其碱基成分含量[J].沈阳药科大学学报,2002,19:112-114.
    [41]谷会岩,宫立冬,马玲.高效毛细管电泳法测定高山红景天中红景天甙含量的比较研究[J].植物研究,2002,22(3):337-340.
    [42]杨更亮,宋秀荣,张红医等.用胶束毛细管电泳法测定清开灵注射液中的有效成分[J].河北大学学报(自然科学版),1998,18(4):359-362.
    [43]Wang KT,Liu HT,Chen XG,et al.Identification and determination of active components in Angelica dahuriea Benth and its medicinal preparations by capillary electrophoresis[J].Talanta,2001,54:753-761.
    [44]Zhao YK,Cao QE,Liu HT,et al.Determination of baicalin,chlorogenie acid and caffeic acid in traditional Chinese medicinal preparations by capillary zone electrophoresis[J].Chromatographia,2000,51(7/8):483-486.
    [45]魏铭,刘小平,李惠等.苦参碱脂质体的制备工艺研究[J].中国药物与临床, 2006,6(5):328-330.
    [46]饶毅,魏惠珍,王义明等.高效毛细管法测定灯盏花素系列制剂的含量[J].中成药,2002,24(8):584-586.
    [47]Li YQ,He XJ,Qi SD,et al.Separation and determination of strychnine and brucine in Strychnos nux-vom ica L.and its p reparation by nonaqueous capillary electrophoresis[J].J.Pharm.Biom.Anal.,2006,41(2):400-407.
    [48]Yu K,Wang YW,Cheng YY.Determination of paeonol and paeoniflorin in Chinese medicine CortexMoutan and'Shuangdan'granule by micellar electrokinetic cap illary chromatography[J].J.Pharm.Biom.Anal.,2006,40(5):1257-1262.
    [49]Hu Z,He LC,Zhang J,et al.Determination of three bile acids in articial CalculusBovis and itsmedicinal p reparations by micellar electrokinetic cap illary lectrophoresis[J].J.Chromatogr.B,2006,837(1):11-17.
    [50]饶毅,魏惠珍,王义明等.毛细管电泳法同时测定复方苦参注射液中三种生物碱的含量[J].分析科学学报,2003,19(3):225-227.
    [51]于燕莉,潘菡清,井莉等.高效毛细管电泳法测定痹痛宁贴剂中东莨菪碱及乌头碱的含量[J].解放军药学学报,2005,21(1):65-67.
    [52]冯成强,张义玲,张文生等.栀子及其混淆品水栀子的蛋白高效毛细管电泳法鉴别[J].北京中医药大学学报,2006,29(5):347-349.
    [53]吕鹏,孙迎节,凌建亚等.毛细管区带电泳在虫草鉴别中的应用[J].中医药学报,2002,30(5):19-20.
    [54]刘萍,古今,冯建涌等.牛黄人工牛黄人胆结石及一种牛黄伪品的毛细管电泳鉴别[J].解放军药学学报,2005,21(4):307-309.
    [55]Cao YH,Wang Y,Ye JN.Differentiation of SwertiaMussotii Franch from Artemisiae Capillaris Herba by capillary electrophoresiswith electrochemical detection[J].J.Pharm.Biomed.Anal.,2005,39(1):60-65.
    [56]柳仁民,何风云,孙爱玲等.毛细管电泳-电喷雾-质谱-质谱分离鉴定粉防己生物碱[J].药学学报,2004,39(5):363-366.
    [57]孙国祥,董玉霞,慕善学等.苦碟子注射液毛细管电泳指纹图谱[J].沈阳药.科大学学报,2006,23(4):233-236.
    [58]Yu K,Gong YF,Lin ZY,et al.Quantitative analysis and chromatographic fingerp rinting for the quality evaluation of Scutellaria baicalensis Georgi using capillary electrophoresis[J].J.Pharm.Biomed.Anal.,2007,43(2):540-548.
    [59]郭涛,隋因,孙沂等.心舒口服液毛细管电泳指纹图谱的研究[J].中草药,2006,37(6):839-843.
    [60]孙毓庆,阮婧华,马欣.中药的毛细管电泳指纹图谱研究[J].色谱,2003,21(4):303-306.
    [61]孙国祥,慕善学,侯志飞等.连翘的毛细管电泳指纹图谱研究[J].色谱,2006,24(2):196-200.
    [62]刘海兴,曹丽曼,万丽梅等.中药月季毛细管电泳指纹图谱的研究[J].潍坊学院学报,2007,7(2):74-79.
    [63]侯经国,王柱命,何天稀等.毛果芸香碱对映体的毛细管电泳手性分离[J].分析测试学报,2004,23(1):64-66.
    [64]李晓海,张金兰,周同惠.一叶萩碱的高效毛细管电泳手性分离及其大鼠体内立体选择性代谢研究[J].药学学报,2002,37(1):50-53.
    [65]周洁宇,章种玮,许学术等.毛细管电泳法手性拆分橙皮苷对映体[J].食品科学,2006,27(5):202-205.
    [66]Frantisek K,Bohumir B,Ladislav C.Capillary Zone electrophoresis separation of enantionmers of lisuride[J].J.Chromatogr.A,2005,1066:255-258.
    [67]赵亮,张国庆,柴逸峰.毛细管电泳法分离硝基喜树碱的同分异构体[J].药学服务与研究,2003,3(2):96-97.
    [68]田景振,魏凤环.葛根黄酮缓释胶囊家兔体内药代动力学研究[J].山东中医药大学学报,2003,27(6):454-456.
    [69]陈亚飞,田颂九,宋景政等.苦参总碱注射液的药动学研究[J].中国药学杂志,2002,37(7):524-526.
    [70]罗奇志,佟丽,杨蒙蒙等.喂饲补阳还五汤的大鼠血清中阿魏酸的高效毛细管电泳分析[J].中草药,2004,35(4):388-390.
    [71]隋因,孙沂,郭涛等.运用血清药理学方法研究红花对豚鼠离体心脏的作用[J].沈阳药科大学学报,2003,20(5):373-376.
    [72]陈惠明.中药煎煮技术[J].实用医技杂志,1995,2(6):548-549.
    [73]穆惠慈,章仲懿,夏勤.不同煎煮方法对六味地黄汤中丹皮酚含量的影响[J].中国药业,1997,8:16-17.
    [74]田树荣,周晓英,刘宏炳等.不同煎煮方法对清金宁气汤中黄酮类成分的影响研究[J].时珍国医国药,2007,18:454-455.
    [75]解亚华,杨维霞,贺少堂等.不同煎煮方法与煎煮时间对大黄煎液中蒽醌与鞣质含量的影响[J].河南中医药学刊,2002,17:15.
    [76]刘志松,邓岩沈,尹华君等.不同煎煮时间对枸杞子水煎液中无机元素含量的影响[J].微量元素与健康研究,1994,11:46.
    [77]刘彦明,万红卫,徐静.不同煎煮时间对血府逐瘀汤挥发油的影响[J].中成药,1990,12:8-9.
    [78]高炳法,费健康.大黄煎煮时间对蒽醌甙的影响[J].浙江中医学院学报,2000,24(4):72.
    [79]张风雷,李立纪,吴荣祖等.附子、附片及煎煮液化学成分比较实验及毒理研究[J].云南中医中药杂志,2004,25(6):29-30.
    [80]黄罗生,赵卫春,夏玉凤.复方四逆汤煎煮方法对有效成分煎出率的影响[J].中国药科大学学报,1999,30(5):332-334.
    [81]梁清南,何贵锋,丘振文.虎杖煎煮过程中化学成分的变化[J].中药材,2001,24(6):416.
    [82]张爱芩,李正国,于立佐.煎煮时间对葛根水溶性成份的影响[J].中药材,1997,20(2):93-94.
    [83]李续娥,刘峰壁.煎煮时间对决明子中蒽醌类浸出量影响的研究[J].中国中药杂志,1999,24(3):150-151.
    [84]马爱华,张俊慧,陆晓和等.煎煮时间对麻黄中麻黄碱溶出率的影响[J].中国实验方剂杂志,1995,1(2):44-45.
    [85]杨志孝.泰山黄精丹参柴胡虎长艾叶煎煮液中部分微量元素的溶出率研究[J].微量元素与健康研究,1996,13(4):31-32.
    [86]孟江,周毅生,廖华为等.正交试验法优化鱼腥草多糖水煎煮提取工艺[J].世界中西医结合杂志,2007,2(6):341-343.
    [87]赵福岐,董丽花,陈小全等.六种泰山野生中药煎煮液中微量元素溶出率的研究[J].泰山医学院学报,2004,25(3):195-196.
    [88]冼寒梅,陈勇.不同煎煮方法对黄芩、黄柏、槐花水煎液中有效成分煎出量的影响[J].广西中医药,1995,18(6):47-48.
    [89]邓明华,庞金瑞.中草药不同水温煎煮结果的实验探讨[J].新疆中医药,2001,19(3):56.
    [90]石娟,宋晓涛,王利等.TLC探讨煎煮方法对黄连汤中小檗碱含量的影响[J].西北药学杂志,2000,15:248.
    [91]裴妙荣,杨文珍,廖晖等.薄层扫描法对”四逆汤”中乌头类生物碱煎煮误差的考察[J].中医药研究,1994,2:62-64.
    [92]陈倩洁,孙明,梁瑞雪等.煎煮时间对川芎中阿魏酸稳定性影响的研究[J].中药新药与临床研究,2002,13(4):259.
    [93]范时根,吴小愚.生川乌中生物碱成分含量随煎煮时间变化的研究[J].天然产物研究与开发,2005,17(5):645-647.
    [94]曹晖.乌头炮制品煎煮前后生物碱含量变化的初步研究[J].江西中医学院学报,1994,6(2):35-37.
    [95]王颖,刘彩虹,介新平.芳香性药物不同煎煮时间有效成分的检测[J].河南科技大学学报(医学版),2005,2:51-52.
    [96]姜佳峰,李长强,付秀英.大黄素在大黄煎煮过程中的变化[J].山东医药工业,2002,21:41-42.
    [97]葛尔宁.RP-HPLC法测定不同煎煮方法下当归芍药汤中阿魏酸和芍药苷的含量[J].中国实验方剂学杂志,2005,11:16-18.
    [98]黄熙,任平,王骊丽等.不同煎煮方法和配伍因素对汤剂中阿魏酸含量的影响[J].中草药,2001,32:411-413.
    [99]朱萱萱,孟蒙,奥山武士等.不同煎煮时间及方法对大黄甘草汤质量的影响[J].南京中医药大学学报,1996.12:28-30.
    [100]李淑芝,郭亚健,徐艳春等.不同煎煮条件对芍药甙煎出量的影响[J].中成药,1999,21:115-116.
    [101]武新安,王惠霞,魏玉辉等.大黄粉末煎煮过程中游离葸醌和结合蒽醌含量变化的考察[J].中国医药药学杂志,2007,27(10):1387-1389.
    [102]王雁梅,刑志霞,史恒军等.反相高效液相色谱法测定不同溶酶煎煮生化汤中阿魏酸的含量[J].时珍国医国药,2007,18(9):2225-2226.
    [103]肖盛元,刘红霞,林文翰等.干姜中的饵芳基庚烷类化合物及其在四逆汤煎煮过程中的立体选择性反应[J].分析化学,2007,35(9):1295-1300.
    [104]黄敬群,田嘉玲,朱伟.高效液相色谱法测定不同煎煮条件下丹参和冠心Ⅱ号中丹参素,原儿茶醛的含量[J].中国中医药信息杂志,2005,12(2):44-45.
    [105]杨春欣,董颖,马爱妞等.高效液相色谱法考察机器与直火煎煮法制备丹参汤剂的质量[J].中国药房,2003,14(5):313-314.
    [106]刘筱蔼,吴伟康,梁天文.煎煮方法和药物配伍对附子毒性的影响[J].中外侓康文摘,2007,4(8):100-103.
    [107]朱伟,阮新民,吴焕林等.煎煮时间对补阳还五汤中芍药苷阿魏酸含量的影响[J].中国中医基础医学杂志,2006,12(7):552-554.
    [108]阎雪梅.煎煮时间对当归中阿魏酸稳定性的影响[J].天津药学,2005,17(3):21.
    [109]何延良,王晓中,张裕彤等.煎煮时间对四君子汤某些成分含量的影响[J].中国医院药学杂志,1992,12(9):413-414.
    [110]马少丹,阮时宝,李宗等.久泻宁颗粒中煎煮液提取工艺研究[J].辽宁中医药大学学报,2007,9(1):42.
    [111]薛燕,周同素,王小民.用LC/MS/MS和RP-HPLC法对泻心汤煎煮产生的沉淀物的研究[J].药物分析杂志,1999,19(3):224-227.
    [112]金幼兰,刘春海,李士勇.用正交试验探讨大黄煎煮条件对大黄酚含量的影响[J].中国药房,1997,8(6):254-255.
    [113]姜翠敏,黄蓓琳.优化选择当归补血汤的煎煮方法[J].中国医院药学杂志,2006,26(12):1508-1510.
    [114]庄华玲,黄亚非,张永明.优选黄花甲苷的水煎煮提取工艺[J].中药材,2006,29(12):1363-1364.
    [115]王勇,宋凤瑞,刘志强等.草乌花煎煮过程中三酯型乌头生物碱的酯交换反应[J].中草药,2006,37:1156-1158.
    [116]王勇,石磊,金东明等.四逆汤煎煮过程中乌头类生物碱的溶出和水解平衡[J]中草药,2003,34(4):311-313.
    [117]扬进,郁建平,周欣.徐长卿煎煮过程中的化学变化研究[J].贵阳中医学院学报,2001,23(3):48-50.
    [118]刘先国,方金东,胡圣虹.电感耦合等离子体原子发射光谱法测定中药方 剂煎煮液中的微量元素[J].分析科学学报,2002,18(4):
    [119]刘先国,方会东,王评.中药方剂煎煮液中ICP-AES法同时测定16个元素[J].光谱学与光谱分析,1997,17(5):90-92.
    [120]柴彦,霍泳宁,任爱农.六种中药材与水煎煮液的十二种金属元素含量比较[J].佳木斯医学院学报,1995,18(3):24-25.
    [121]尉小慧,孙秀梅,张兆旺.麻杏石甘汤2中提取物的兔血清高效毛细管电泳图谱比较研究[J].中国药房,20060,17(20):1540-1542.
    [122]李伟,宋凤瑞,刘志强等.毛细管电泳及液相色谱法研究黄连黄芩配伍过程化学成份的变化[J].药物学报,2008,43(2):191-194.
    [123]Ding XP,Wang M,Chen HL,et al.Separation and determination of glycyrrhetinic acid and glycyrrhizic acid in Glycyrrhiza uralensis Fisch root by CZE with internal standard method.Journal of Lanzhou University(Natural Sciences),accepted.
    [1]Deng CH,Liu N,Cao MX,et.al.Recent developments in sample preparation techniques for chromatography analysis of traditional Chinese medicines[J].J.Chromatogr.A,2007,1153:90-96.
    [2]Pharmacopoeia of People's Republic of China(2000 edition),Chemical Industry Publishing,2000.
    [3]陈惠民.中药煎煮技术[J].实用医技杂志,1995,2:548-549.
    [4]朱伟,阮新民,吴焕林等.煎煮时间对补阳还五汤中芍药苷、阿魏酸含量的影响[J].中国中医基础医学杂志,2006,12:552-554.
    [5]孙玉琦,肖小河,马永刚等.大黄煎煮过程中蒽醌类成分动态变化规律研究[J].解放军药学学报,2006,22:281-283.
    [6]王智民.中药药效物质基础的系统研究是中药现代化的关键[J].中国中药杂志,2003,28:1111-1113.
    [7]单建学.中药汤剂煎煮方法对临床疗效的影响[J].湖南中医药导报,2002,8(11):692-693.
    [8]Wang QE,Ma SM,Fu BQ,et.al.Development of multi-stage countercurrent extraction technology for the extraction of glycyrrhizic acid(GA)from licorice (Glycyrrhiza uralensis Fisch)[J].Biochem.Eng.J.,2004,21:285-292.
    [9]胡汉芳,阎正.用比色法测定不同产地甘草中甘草酸的含量.河北大学学报(自然科学版),1998,18(4):371-374.
    [10]Fu BQ,Liu J,Li H,et.al.The application of macroporous resins in the separation of licorice flavonoids and glycyrrhizic acid[J].J.Chromatogr.A,2005,1089:18-24.
    [11]Xu Y,Fang LY,Peng MR.The simultaneous TLC identification of three crude drugs & content determination of Glycyrrhizic acid of Guipi tablet[J].Chin.JMAP,2003,20(5):376-378.
    [12]Chen HR,Sheu SJ.Determination of glycyrrhizin and glycyrrhetinic acid in traditional Chinese medicinal preparations by capillary eleetrophoresis[J].J.Chromatogr.A,1993,653:184-188.
    [13]Huang HY,Hsieh YZ.Determination of puerarin,daidzein,paeoniflorin, cinnamic acid, glycyrrhizin, ephedrine, and [6]-gingerol in Ge-gen-tang by micellar electrokinetic chromatography [J]. Anal. Chim. Acta, 1997,351:49-55.
    
    [14] Li GB, Zhang HY, Fan YQ, et. al. Migration behavior and separation of active components in Glycyrrhiza uralensis Fisch and its commercial extract by micellar electrokinetic capillary chromatography [J]. J. Chromatogr. A, 1999, 863:105-114.
    [15] Dong YM, Chen XF, Chen XG. Rapid determination of berberine in Tianshen capsule by nonaqueous capillary electrophoresis [J]. J. Lanzhou Univ. (Natural Sciences), 2006,42 (6): 73-77.
    [16] Lv WJ, Chen YL, Zhang YX, et. al. Microemulsion electrokinetic chromatography for the separation of arctiin and arctigenin in Fructus Arctii and its herbal preparations [J]. J. Chromatogr. B, 2007, 860:127-133.
    [1]王智民.中药药效物质基础的系统研究是中药现代化的关键[J].中国中药杂志,2003,28:1111-1113.
    [2]Chen HW,Fang ZL.Combination of flow injection with capillary electrophoresis Part 4.Automated multicomponent monitoring of drug dissolution[J].Anal.Chim.Acta,1998,376:209-220.
    [3]Kuban P,Karlbcrg B.On-Line Dialysis Coupled to a Capillary Electrophoresis System for Determination of Small Anions[J].Anal.Chem.,1997,69: 1169-1173.
    [4]Chen HW,Fang ZL.Combination of flow injection with capillary electrophoresis Part 3.On-line sorption column preconcentration capillary electrophoresis system[J].Anal.Chim.Acta,1997,355:135-143.
    [5]Arce L,Kuban P,Rios A,et al.On-line ion-exchange preconcentration in a flow injection system coupled to capillary electrophoresis for the direct determination of UV absorbing anions[J].Anal.Chim.Acta,1999,390:39-44.
    [6]Dantan N,Frenzel W,Kuppers S.Flow Injection Analysis Coupled with HPLC and CE for Monitoring Chemical Production Processes[J].Chromatographia,2001,54:187-190.
    [7]Chen HL,Wang KT,Pu QS,et al.On-line conversion and determination of artemisinin using a flow-injection capillary electrophoresis system[J].Electrophoresis,2002,23:2865-2871.
    [8]Chen HL,Fan LY,Chen XG,Hu ZD,Zhao ZF,Hooper M.On-line conversion and determination of aspirin using a flow injection-capillary electrophoresis system[J],J.Sep.Sci.,2003,26:863-868.
    [9]Fan LY,Chen HL,Zhang JY,et al.Continuous on-line derivatization and determination of amino acids by a microfluidic capillary electrophoresis system with a continuous sample introduction interface[J].Anal Chim.Acta,2004,501:129-135.
    [10]Cheng YQ,Fan LY,Chen HL,et al.Method for on-line derivatization and separation of aspartic acid enantiomer in pharmaceuticals application by the coupling of flow injection with micellar electrokinetic chromatography[J].J.Chromatogr.A,2005,1072:259-265.
    [1]徐国钧,徐珞珊主编.常用中药材品种整理和质量研究(南方协作组,第一册)[M].福州:福建科学技术出版社,1994:648-672.
    [2]向仁德,韩英.中药蛇床子的研究概况[J].天然产物研究与开发1993,5(4):57-61.
    [3]张新勇,向仁德.蛇床子化学成分的研究[J].中草药,1997,28(10):588-590.
    [4]蔡金娜,张亮,王峥涛等.蛇床果实中香豆素类成分的变异及其规律[J].药学学报,1999,34(10):767-771.
    [5]张彦英,王心亮,孟宪梅等.香豆素类化合物的合成及其光谱性质的研究[J].染料与染色,2003,40:68-70.
    [6]陈志霞,林励,孙冬梅.化橘红中香豆素类成分薄层色谱指纹图谱研究[J].中南药学,2005,3:9-11.
    [7]李宏宇,戴跃进,张海波等.不同商品白芷中香豆素的薄层扫描法测定含量[J].华西药学杂志,1990,5(3):165-167.
    [8]于叶玲,崔久峰,唐星.HPLC法测定温肾咳喘片中欧前胡素、蛇床子素、和厚朴酚、厚朴酚和甘草酸[J].中草药,2007,38:387-389.
    [9]郭永卿,马宝玉,孝云丽.高效液相色谱法测定蛇床子药材中欧前胡素的含量[J].西北药学杂志,2002,17:105-106.
    [10]Chen CT,Sheu SJ.Separation of coumarins by micellar electrokinetic capillary Chromatography[J].J.Chromatogr.A,710(1995)323-329.
    [11]邱涵,陈素俭,叶飞云.高效毛细管电泳法测定克炎肿片中维脑路通和香豆素的含量[J].中成药,2002,24:844-846.
    [12]蒋雪梅,陶然,肖尚友等.微乳液毛细管电动色谱应用进展[J].化学研究与应用,2005,17:710-714.
    [13]张继友,李前锋,潘仲巍等.毛细管胶束电动色谱测定大黄及复方制剂中蒽醌化合物[J].兰州大学学报(自然科学版),2003,39:101-102.
    [14]Zhang JY,Xie JP,Liu JQ,et al.Microemulsion electrokinetic chromatography with laser-induced fluorescence detection for sensitive determination of ephedrine and pseudoephedrine[J].Electrophoresis,2004,25:74-79.
    [15]Christian W.Solvent effects in microemulusion electrokinetie chromatography [J].Electrophoresis,2003,24:1537-1539.
    [1]Wit RD,Aapro M,Blower PR.Is there a pharmacological basis for differences in 5-HT3-reeeptor antagonist efficacy in refractory patients[J].Cancer Chemother.Pharmacol.,2005,56:231-238.
    [2]Aapro M,Blower P.5-Hydroxytryptamine type-3 Receptor antagonists for chemotherapy-induced and radiotherapy-induced aausea and emesis[J].Cancer, 2005,104:1-13.
    [3]Hickok JT,Roscoe JA,Morrow GR,et al.5-hydroxytryptamine-receptor antagonists versus prochlorperazine for control of delayed nausea caused by doxorubicin:a URCC CCOP randomised controlled trial[J].Lancet Oncol.,2005,6:765-772.
    [4]Eisenberg P,Vadillo JF,Zamora R,et al.Improved Prevention of Moderately Emetogenic Chemotherapy-Induced Nausea and Vomiting with Palonosetron,a Pharmacologically Novel 5-HT3 Receptor Antagonist[J].Cancer,2003,98:2473-2482.
    [5]http://www.rxlist.com/cgi/generic3/aloxi.htm.Accessed January 2006.
    [6]Kang JW,Wistuba D,Schurig V.Recent progress in enantiomede separation by capillary electrochromatography[J].Electrophoresis,2002,23:4005-4021.
    [7]Goel TV,Nikelly JG,Simpson RC,Matuszewski BK.Chiral separation of labetalol stereoisomers in human plasma by capillary electrophoresis[J],d.Chromatogr.A,2004,1027:213-221.
    [8]Jiang ZG,Kang JW,Bischoff D,Bister B,Sussmuth RD,Schurig V.Evaluation of balhimycin as a chiral selector for enantioresolution by capillary electrophoresis[J].Electrophoresis,2004,25:2687-2692.
    [9]Kavalirova A,Pospisilova M,Karlicek R.Enantiomedc analysis of dvastigmine in pharmaceuticals by cyclodextrin-modified capillary zone electrophoresis[J].Anal.Chim.Acta,2004,525:43-51.
    [10]Tian K,Chen HL,Tang JH,Chen XG,Hu ZD.Enantioseparation of palonosetron hydrochloride by micellar electrokinetic chromatography with sodium cholate as chiral selector[J],J.Chromatogr.A,2006,1132:333-336.
    [11]康杰分,李清岭,寿崇琦.环糊精及其衍生物在毛细管电泳手性拆分中的应用[J].化学分析计量,2006,15(6):106-108.
    [12]Eeckhaut AV,Detaevemier MR,Michotte Y.Separation of neutral dihydropyridines and their enantiomers using electrokinetic chromatography[J].J.Pharm.Biomed.Anal,,2004,36:799-805.
    [13]Chen ZL,Lin JM,Uchiyama K,et al.Simultaneous separation of o-,m-,pfluoro-phenylalanine and o-,m-,p-tyrosine by ligand-exchange micellar electrokinetic capillary chromatography[J],d..Chromatogr.A,1998,813:369-378.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700