用户名: 密码: 验证码:
土壤种子库与鼢鼠土丘植被恢复的关系
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
土壤种子库是植被自然演替和自我修复机制的重要组成部分,在很大程度上代表了植被的演化历史、现状及未来的走向,对地上植被的恢复和重建有重要的作用。高原鼢鼠作为高寒草甸生态系统中的重要成员,以其终身营地下生活和掘土造丘的特殊方式,对高寒草甸土壤种子库的性质和功能,以及鼠丘植被的恢复产生着独到而重要的影响。为了深入探讨高原鼢鼠与土壤种子库以及鼠丘植被恢复的关系和作用机理,2004年至2006年间,以玛曲县境内的典型高原鼢鼠分布地为研究地,分别就鼠丘分布格局、植被群落、种子雨、土壤种子库和鼠丘种子库的基本特征及其相互关系进了研究。主要研究结果如下:
     1.高原鼢鼠的土丘可依据其形成时间大致分为当年龄、1-2年龄和3年龄以上3种类型。研究期内,这3类土丘的数量关系基本维持在1:1:1,说明种群密度较为稳定。利用这一特性,可通过对3类土丘比例关系对鼠群数量的消长趋势作出预测。由于当年8月前形成的土丘数具有易于定性、现实意义较大的特点,因而,更适宜于作为高原鼢鼠相对密度的指标。
     2.典型亚高山草甸的高原鼢鼠栖息地,土壤种子库的平均密度为4836粒/m~2,物种数为38种,分布在19个科。其中多年生物种占有绝对优势,占物种总数85%以上。
     3.植被物种数为46种,其中一年生物种约占10%左右,显著高于无鼠分布地(P<0.01)。植被物种数显著高于土壤种子库的物种数(P<0.05),且科间分布更加广泛,二者间的相似性约为68%。
     4.鼠丘种子库密度、物种数和种子活力均表现为随丘龄增加而增大的显著趋势。当年龄鼠丘与其它龄级鼠丘相比,种子库密度和物种数间的差异均极为显著(P<0.01),而2年龄和3年龄间的差异显著性则为显著极水平(P<0.05);新鼠丘种子库的种子活力显著低于2年龄和3年龄鼠丘(P<0.05),3年龄鼠丘的种子活力虽也高于2年龄鼠丘,但无显著性差异(P>0.05)。
     5.种子雨与鼠丘种子库组成存在一定的差异,但它与植被的物种组成却较为类似。鼠丘种子库的物种数占种子雨物种数的82.05%,占植被物种数的69.57%。可见,种子雨是鼠丘种子库补充更新的物质基础,是鼠丘植被恢复的重要种源,是维持植被物种多样性的机制之一。
     6.鼠丘密度是影响植被性状的重要因素。在鼠丘密度的各梯度水平上,物种丰富度、地上生物量、香农-威纳多样性指数的最高值均出现于中等密度样地,一定数量高原鼢鼠的存在,有助于群落结构的优化,并对物种多样性和地上生物量的提高具有明显的促进作用。
     7.鼠丘种子库与鼠丘植被物种组成的相似性随鼠丘形成时间的延长而增加。经过三次越冬以后,新鼠丘、当年、1-2年和3年龄鼠丘物种组成与对应植被的相似性依次为60.07%、65.82%、70.41%和76.57%,与此同时,植被盖度、物种组成等性状指标也表现为与背景植被逐次趋同的变化。据此推断,鼠丘植被恢复周期应当在4-5年。
Soil seed bank is an important component of natural vegetation succession and self-repair mechanism, largely represents evolutionary history, current status and future trend of vegetation, and plays an important role in the recovery and regeneration of aboveground vegetation. Plateau zokors are important members of alpine meadow ecosystem and have unique and important effects on soil seed bank traits and function in alpine meadow, and recovery of mound vegetation with the special way of subterranean existence for life and mounding by excavating. In order to probe into the relationship and mechanism between plateau zokor, soil seed bank and recovery of mound vegetation, the research was conducted in a typical distribution site of plateau zokors in Maqu county from 2004 to 2006, studying essential characteristics and correlations among mound distribution pattern, plant community, seed rain, soil seed bank and mound seed bank. The main results are as follows:
     1.Plateau zokor mounds can be separated into three age categories: new or less than 1 year old, intermediate or 2 years old and old or 3 years old, according to their formation time. During the study, the quantitative relationship among three kinds of mounds has been maintained 1:1:1, indicating that the population density is relatively stable. Thus, we could make prediction on ebb and flow trend of population quantity with the proportional relationship among three kinds of mounds. Since the number of mounds formed before August is easily to determine the nature and has larger practical significance, consequently, it is more suitable to be used as relative density index of plateau zokor.
     2.In typical plateau zokor habitats of sub-alpine meadow, the average density of soil seed bank is 4836 seeds/m~2 , species number is 38, distributed among 19 families, and perennial plants are absolutely predominant, accounting for 85% of the total species number.
     3.Species number of vegetation is 46, and annuals approximately account for 10%, significantly higher than that in sites of no plateau zokor. Species number of vegetation is significantly higher than that in soil seed bank (38), and they are distributed more extensively among families, similarity indices between the two are around 68%.
     4.Seed bank density of mound, species number and seed viability all increase markedly with the increased mound age. There are extremely significant differences between new mounds and other kinds of mounds in seed bank density and species number (P < 0.01), while the differences between 2 years old and 3 years old mounds are significant (P < 0.05); seed viability of new mound seed bank is significantly lower than that of 2 and 3 years old mounds (P < 0.05), and seed viability of 3 years old mounds is higher than that of 2 years old mounds, but not statistically significant (P > 0.05).
     5.Components of seed rain are different than that of mound seed bank, but species components of seed rain and vegetation are relatively similar. Species number in mound seed bank occupies 82.05% of that in seed rain, and 69.57% of that in vegetation. Obviously, seed rain is material base of recruitment and renewal of mound seed bank, important seed sources of mound vegetation recovery, and one of the important mechanisms to maintain plant diversity.
     6.Mound density is an important factor affecting vegetation traits. Species richness, aboveground biomass and Shannon-Winner index all peak in intermediate density plots across mound density gradients, thus, certain number of plateau zokor in alpine meadow contributes to optimization of community structure, and promotes markedly the enhancement of species diversity and aboveground biomass.
     7.Similarities of species components between mound seed bank and mound vegetation increase with the time of mound formation. Similarity indices between species components of new, 1 year old ,2 years old and 3 years old mound send bank and corresponding mound vegetation are 60.07%、65.82%、70.41% and 76.57% respectively; while vegetation cover, species components and other property indices also showed increasing convergence to that of background vegetation. Accordingly, recovery cycle of mound vegetation should be between 4 to 5 years.
引文
[1] 安树青,林向阳,洪必恭.宝华山主要植被类型土壤种子库初探.植物生态学报,1996,20(1):41-50
    [2] 程国栋,王根绪等.江河源区生态环境变化与成因分析.地球科学进展(增刊),1998.13:24-30
    [3] 邓自发,谢晓玲,王启基等.高寒小篙草草甸种子库和种子雨动态分析.应用与环境生物学报,2003,9(1):7-10
    [4] 丁连生,张卫国,韩天虎高原鼢鼠种群消长与繁殖特性的关系.草业学报,1998,7(4):49-54
    [5] 樊乃昌,施银柱.中华鼢鼠(Eospalax)亚属分类研究.兽类学报,1982,2(2):183-198
    [6] 樊乃昌,王权业,周文杨等.高原鼢鼠种群数量与植被破坏程度的关系.见夏武平主编,高寒草甸生态系统国际学术讨论会论文集.北京:科学出版社,1988,77-84
    [7] 韩天虎,张卫国,丁连生.高原鼢鼠栖息地的植被特征.草业学报,1999,8(2):43-49
    [8] 江小雷,张卫国,杨振宇.不同演替阶段鼢鼠土丘群落植物多样性变化研究.应用生态学报,2004,15(5):814-818
    [9] 景增春,王文翰,王长庭,等.江河源区退化草地鼠害的治理研究.中国草地,2003,25(6):36-40
    [10] 李海英,彭红春,王启春.高寒矮嵩草草甸不同退化演替阶段植物群落地上生物量分析.草业学报,2004,13(5):26-32
    [11] 李宏俊,张知彬.动物与植物种子更新的关系Ⅱ.动物对种子的捕食、扩散、贮藏及与幼苗建成的关系.生物多样性,2001,9(1):25-37
    [12] 廖国藩,贾幼陵.中国草地资源.北京:中国科学技术出版社,1996.
    [13] 刘国富,温得启,胡晓梅.高原鼠兔和高原鼢鼠乳酸脱氢酶同功酶的初步研究.兽类学报,1985,5(3):223-227
    [14] 刘仁华.中华鼢鼠的分类及地理区划.国土与自然资源研究,1995,3:45-56
    [15] 卢辉,张泽华,龙瑞军.蝗虫重度干扰下草地恢复演替过程中生物群落的变化.草原与草坪,2005,110(3):59-61
    [16] 吕晓英,吕胜利.甘南州草地畜牧业的可持续发展问题.草业科学,2002,19 (7):1-4
    [17] 洛桑·灵智多杰.青藏高原环境与发展概论.拉萨:中国藏学出版社,1996,74-75
    [18] 师尚礼,柳小妮.草地优化管理与可持续发展.草原与草坪,2005,108(1):14-17
    [19] 孙书存、陈灵芝.动物搬运与地表覆盖物对辽东栎种子命运的影响.生态学报,2000,Vol 21,(1):80-85
    [20] 王刚,杜国祯.鼢鼠土丘植被演替过程中的种的生态位分析.生态学杂志, 1990,9(1):1-6
    [21]王刚,梁学功.1995沙坡头人工沙区的种子库动态.植物学报,37(3):231-237
    [22]王启基,周立,王发刚,1995.放牧强度对冬春草场植物群落结构及功能的效应分析.见:中国科学院海北高寒草甸生态系统定位站编著.高寒草甸生态系统第4集.北京:科学出版社.353-364
    [23]王权业,边疆晖,施银柱.高原鼢鼠土丘对矮嵩草草甸植被演替及土壤营养元素的作用.兽类学报,1993,13(1):31-37
    [24]王祖望,曾缙祥,韩永才.高原鼠兔和中华鼢鼠气体代谢的研究.动物学报,1979,25(1):75-84
    [25]魏登邦,魏莲.高原鼢鼠的红细胞、血红蛋白及肌红蛋白的测定结果.青海大学学报(自然科学版),2001,19(4):1-2
    [26]肖运峰,梁杰荣,乐炎舟等.木格滩地区中华鼢鼠的分布及其对草场植被的影响.兽类学报,1981,1(1):57-66
    [27]肖运峰,梁杰荣,沙渠.高寒草甸弃耕地内鼠类的数量配置及对植被演替的影响.兽类学报,1982,2(1):73-80
    [28]于顺利,蒋高明.土壤种子库的研究进展及若干研究热点.植物生态学报,2003,27(4):552-560.
    [29]余晓华,刘荣堂.高原鼢鼠的经济损害和经济阈值研究.草原与草坪,2002,98 (3):36-37.
    [30]袁建立,江小雷,黄文冰,等.放牧季节及放牧强度对高寒草地植物多样性的影响.草业学报,2004,13(3):16-21
    [31]袁庆华,张卫国,贺春贵.牧草病虫鼠害防治技术.北京:化学工业出版社,2004
    [32]张卫国,江小雷.鼢鼠的造丘活动及不同休牧方式对草地植被生产力的影响.西北植物学报,2004,24(10):1882-1887
    [33]张卫国.高寒草甸草原区主要鼠害发生发展规律及其调控途径的研究.2000(内部资料)
    [34]张堰铭,刘季科.地下啮齿动物的生物学特征及其对生态系统的作用.兽类学报,2000,20(4):144-154
    [35]张堰铭,刘季科.高原鼢鼠对高寒草甸植被特征和生产力的影响.兽类学报,2002,22(3):201-210
    [36]张堰铭,刘季科.高原鼢鼠挖掘对植物生物量的效应及其反映格局.兽类学报,2002,22(4):292-298
    [37]张咏梅,何静,潘开文.土壤种子库对原有植被恢复的贡献.应用与环境生态学报,2003,9(3):326-332
    [38]张志权.土壤种子库.生态学杂志,1996,15(6):36-42
    [39]赵丽娅,李锋瑞,王先之.草地沙化过程中地上植被与土壤种子库变化特征.生态学报,2003,23(9):1745-1756
    [40]郑翠玲,曹子龙,赵廷宁,孙保平.围封沙化草地土壤种子库动态研究.水土保持 究,2005, Vol. 12 (6): 169-171
    [41] April D W,James K D. Modification of vegetation structure and e-cosystem processes by North American grassland mammals.Oe-cologia,1992,92:520-531
    [42] Baker H C. Seed weight in relation to environmental conditions in California. Ecology. 1972,53:997-1010
    [43] Baskin J M,Baskin C C. Evolutionary consideration of claims for physical Dormancy break by microbial action and abrasion by soil particles. Seed Science Research 2000,10:409-13
    [44] Bekker R M ,Oomes M J M.& Bakker P J. The impact of groundwater level on soil seed bank survival. Seed Science Research,1998,(8):399-404
    [45] Bigwood D W. and Inouye D W. Spatial pattern analysis of seed banks: An improved method and optimizing sampling. Ecology,1988,69:497-507
    
    [46] Bliss LC. Arctic and alpine plant life cycles. Annu. Rev. Ecol.Syst.1971, 2, 405-538.
    
    [47] Brenchley W E.Buried weed seeds. Agric.Sci,1918,9:l-31
    [48] Buhler D D, Max well B D. Seed separation and enumeration from soil using K_2CO_3- cetrifugation and image analysis. Weed Sci,1993,41:298-302
    [49] Carol A. Early changes in species composition of upland sown grassland under extensive grazing management. Applied Vegetation Science,2002,S:87-98
    [50] Carol C.B, Jerry M B, Sees Ecology, Biography, and Evolution of Dormancy and germination.San Diego,California:Academic Press,1998,133-179
    [51] ChambersJ C. Relationships seed fates and seedling establishment in an amine ecosystem. Ecology 1995,76:24-33
    [52] Champness S S ,K.Morros.The population of buried variable seeds in relation to contrasting pasture and soil types.Journal of Ecology,1948,36:149-173
    [53] Coffin D P,Lauenroth W K.Spatial and temporal variation in the seed bank of a semiarid grassland.Amer.J.Bot,1989,76:53-58
    [54] Cross K L.A comparison of methods for estimating seed numbers in the soil.Ecol, 1990,78:1079-1093
    [55] Danvind M ,Nilsson C. Seed floating ability and distribution of alpine plants alnno a northern Swerlich river.Tnurnal of Veletatin Science A,1997,271-6
    [56] Edward E.F, Plant biology:New fatty acid-based signals:A lesson from the plant world.Sceince,1997,276:912-913
    
    [57] Edwards P J, Wratten S D. Ecology of Insect-Plant Interactions.London,1980
    [58] Ellner S. Germination dimorphisms and parent-offspring conflict in seed germination. Journal of Theoretical Biology,1986,123:173-86
    [59] Fay P K, Olson W A.Technique for separating weed seed from soil.Weed Sci, 1978, 26:530-533.
    [60] Fenner M. Seed Ecology.London: Chapman , Hall,1985,21-28.
    [61] Forcella F. Aspercies-area curve for buredeviable seeds. Aus.J. Agric.Res, 1984,35: 645-652,
    
    [62] Forcella F. Prediction of weed seedling densities from buried seed reserves. Weed
    [63] Foster M A ,Stubbendieck J.Effect s of the plains pocket gopher(Geomys bursari us) on rangland[J].Journal of Range Management ,1980 ,33:74-78
    
    [64] Fox J F.seed banks of interior Alaskan U.S.A.tundra.Arct.Alp.Res,1983,15: 405-412.
    [65] Freedman B, Hill N.,Henry G Seed banks and seedling occurrence in a high arctic oasis at Alexandra Fjord, Ellesmere Island,Canada.Can.J.Bot,1982,60,2112-2118
    [66] Funes G , Basconcelo S. Seed size and shape are good predictors of seed Persistence in soil temperate mountain grasslands of Argentina.Seed Science Research 1999. 9, 341-5.
    [67] Garwood N C.Tropical seed bank:a review.In: Leck, M.A.,V T. Parker & R.L. Simpson eds. Ecology of soil seed bank.San Diego, Academic Press, 1989,1-5.
    [68] Gilfedder J, Kirkptrick J B.Germinable soil seed and competitive relationships between a rare natives species and exotics in a semi-natural pasture in the Midlands,Tas, mania. Biol.Conserva,1993,64:113-119.
    [69] Grime J P.Plant Strategies and Vegetation Precess.Wiley,New York,1979
    [70] Grinnell J.The burrowing rodents of California as agents in soil formation. Mammal, 1923,4:137-149
    
    [71] Harper J L.Population Biology of Plants.London:Academic Press, 1977,256-263
    [72] Hayashi I, Numata M. Viable buried-seed population in the Miscanthus and Zoysia type grasslands in Japan-Ecological studies on the buried-seed population in the soil related in plant succession V I.Jap.J.Ecol,1971,20:243-252
    [73] Henderson C B.Spatial and temporal pattern in the seed bank and vegetation of a desert grassland community. Ecol, 1988,76:717-728
    [74] Hopkins M S, Graham A W.The species composition of soil seed banks beneath lowland tropical rainforests in North Queensland,Australia. Biotropica,1983,15:90-99
    [75] Huston M.Biological diversity: the coexistence of species on changing landscapes. Cambridge,U K: Cambridge University Press ,1994
    [76] Johnson E A. Buried seed populations in the subarctic forest east of Great Slave Lake, Northwest Territories. Can.J.Bot,1975,53:2933-2941
    [77] Jones C Getal. Positive and negative effects of organisms as physical ecosystem engineers. Ecology, 1997,78:1946-1957
    [78] Jones C G,Lawton J H ,Shachak M.Organisms asecosystem engineers. Oikos, 1994 , 69:373-386
    [79] Lavorel S ,McIntyre S ,Landsberg J,etal. Plant functional classifications:from general groups to specific groups based on response to disturbance.Trends Ecoll Evoll,1997, 12:474-478
    [80] Leck M A ,Graveline K J.The seed bank of a freshwater tidal marsh. Am. Bot, 1979,66: 1006-1015.
    [81] Leck M A,Parker V T, Simpson R L. Ecology of soil seed banks. London: Academic Press, 1989,118-122
    [82] Leek M A.Germination in Barrow, Alaska tundra soil cores Arct. Alp. Res, 1980, 12:343-349.
    [83] Malone C R. A rapid method for enumeration of viable seeds in soil. Weeds, 1967,15: 381-382
    [84] McGraw J B.The role of buried viable seed in arctic an d alpine plant community, In:Leek MA, Parker VT, Simpson RL eds.Ecology of Soil Seed Banks, New York:Academic Press,1989,91-104
    [85] Mcnaughton S J.Biodiversity and function of grazing ecosystems.Biodiversity and Ecosystem Function (eds.Shultz E D, Mooney H A.).Berlin,Germany:Springer Verlag, 1999,361-382
    [86] Mielke H W. Mound building by pocket gophers(Geomyidae):their impact on soil and vegetation in North America. Biogeogr, 1977,4:171-180
    [87] Milton K. Leaf change and fruit production in sex neotropical Moraceae species. Journal of Ecology,1991,79:l-26
    [88] Milton W E J. The occurrence of buried viable seeds in soils at different elevations and in a salt marsh.Ecol,1939,27:149-159
    [89] Moles A T, Hodson D W ,Webb C J. Seed size, shape and persistence in the soil in the New Zealand flora.Ookos,2000,99:241-8
    [90] Nakagoshi N. Buried viable seeds in temperate forests.In"The Population Structure of Vegtation"(J. White, ed.),1985,pp.551-570
    [91] Nilsson P,Fagerstrom T. Does seed dormancy benefit the mother plant by reducing seed competition. Evolutionary Ecology, 1994,8:422-30
    [92] Pacala S W ,Crawley M J. Herbivores and plant diversity.American Naturalist, 1992, 140:243-266.
    [93] Peco B ,Traba J . Seed size, shape and persistence in dry Mediterraneangrass and scrublands. Seed Science Research,2003,13:87-95
    [94] Reichman O J ,Smith S C. Impact of pocket gopher burrows on overlying vegetation. Journal of Mammalogy,1985,66:720-725
    [95] Reichman O J etal.Burrows and burrowingbehavior by mammals.Curr. Mammal 1990,2:197-244
    [96] Reichman O J, Seabloom Eric W. The role of pocket gophers as subterranean ecosystem engineers .Ecology Evolution 2002,Vol.17(1):44-49
    [97] Roach D A. Buried seed bank standing vegetation in two adjacent tundra habitats, northern Alaska.Ocellogia, 1983,60:359-364
    [98] Roberts HA. Seed bank in soil.Adv.Appl.Biol,1981,6:l-55
    
    [99] Simpson R L. Ecology of soil seed bank.San Diego :Academic Press, 1989, 149-209
    
    [100] Smith C C, Fretwell S D.The optimal balance between size and number of offspring. American Naturalist,1974,108:499-506
    [101] Spencer S R ,Cameron G N ,Esbelman B D ,etal. Influence of pocket gopher mounds on a Texas coastal prairie.Oecologia, 1985,66:111-115
    [102] Standifer L C A. Technique for estimating weed seed population in cultivated soil.Weed Sci,1980,28:134-139
    [103] Stocklin J, Fischer M. Plants with longer-lived seeds have lower local extinction rates in grassland remnants.Oecologia,1999,120:539-43
    [104] Sudebilige H, Li Y H(李永宏), Yong S P(雍世鹏), SaR(萨仁).Germinable soil seed bank of Artemisia frigida grassland and its response to grazing.Acta Ecol Sin, 2000, 20(1)43-48
    [105] Swank S E,Oechel W C.Interaction among the effects of herbivory,competition, and resource limitation on chaparral herbs.Ecology,1991,72:104-115
    [106] Thomas P.Bet-hedging germination of desert annuals: beyond the first year. The American Naturalist, 1993,142:474-487
    [107] Thompson K, Grime J P,and Mason G. Seed germination in response to Diurnal fluctuations in temperature. Nature (London),1977,267:14-78
    [108] Thompson K, Grime J P. Seasonal variation in the seed banks of herbaceous species in ten contrasting habitats. Ecol, 1979,67:893-921
    
    [109] Thompson K.,BakkerJ P.,Bekker R M. The soil seed banks of North West Europe:
    
    [108] Methodology, Density and Longevity. Cambridge University Press, 1997
    [110] Thompson K.,Basterm K. Establishment from seed of selected Umbelliferae in unmanaged grassland.Functional Ecology, 1992,6:46-52
    [111] Thompson K.Mineral nutrient content.In Methods in Comparative Plant Ecology, ed.G.A.F. Hendry.Grime,London:Chapman,Hall,1993.pp.l9-24
    [112] Thompson K.Small-scale heterogeneity in the seed bank of an acidic grassland. Journal of Ecology,1986,74:733-8
    [113] ThompsonJ N. Post-dispersal seed predation in Lornatium spp. (Umbelliferae): Variation among individuals and species. Ecology,1985,66:1068-1616
    [114] Tilman D. Plant succession and gopher disturbance along an experimental gradient. Oecologia ,1983,60:285-292.
    [115] Uhl C.,Clark K.,Clark H, and Murphy P. Early plant succession after cutting and burning in the upper Rio Negro region of the Amazon Basin.Ecol,1981,69:631-649
    [116] Uhl C,Clark K.,Clark H,and Maquirion P. Successional patterns and processes associated with slash-and-bum agriculture in the upper Rio Negro region of the Amazon Basin. Biotropica,1982,14:249-254
    [117] West N E.Biodiversity of Rangelands.Range Manage,1993,46:22-31
    [118]YU Shun-Li, Marcelo STERNBERG, JIANG Gao-Ming, Pua KUTIEL. Heterogeneity in Soil Seed Banks in a Mediterranean Coastal Sand Dune.Acta Botanica Sinica,2003,45(5):536-543

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700