用户名: 密码: 验证码:
化学镀法制备银氧化镱触点材料的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
论文针对共沉淀法制备AgYb203触点材料时,第二相粒子的粒径与形貌无法控制,且Ag与Yb_2O_3界面结合性能差等问题,开展化学镀法制备AgYb_2O_3复合粉体的研究,以期进一步提高AgYb_2O_3触点材料性能。
     论文采用SEM、DSC等分析测试方法研究了前驱体粉体的粒径与形貌和焙烧制度对Yb_2O_3粉体粒径与形貌的影响。用液相沉淀法可以制得不同粒径及形貌的Yb_2O_3前驱体:用草酸为沉淀剂得到分散性良好的微米级条状前驱体Yb_2(C_2O_4)_3·4H_2O;用氨水和碳酸氢铵为沉淀剂,分别得到无定形的纳米级前驱体Yb(OH)_3·2H_2O和Yb_2(CO_3)_3·2.5H_2O;用尿素为沉淀剂得到球形的无定形的单分散前驱体Yb(OH)CO_3·H_2O。通过控制反应物浓度、反应温度、陈化温度与时间可以得到粒径在1-3μm间大小均一的草酸镱颗粒。依据前驱体的TG与DSC曲线确定非线性焙烧制度,改善了一般焙烧制度中颗粒团聚现象。相同升温制度下,焙烧温度越高,焙烧产物粒径越大。
     利用化学镀法在不同粒径的氧化镱粉体表面包覆银,得到核壳结构的AgYb_2O_3复合粉体。本文研究了粉体预处理工艺、还原剂种类、PH值、甲醛浓度和反应温度对Yb_2O_3表面镀银效果和银还原率的影响。研究表明:敏化、活化处理促进银在Yb_2O_3表面还原析出,避免生成大量银镜。选择合适的还原剂可控制银还原速率,得到致密均匀的包覆层。PH值和反应温度的提高都可以增强甲醛的还原能力,但PH值和反应温度太高时,主盐溶液在反应过程中发生自分解。随着甲醛浓度的提高到60ml/L,甲醛与氨水反应生成六亚甲基四胺,所以银还原率先增大后减小。
     复合粉体经压制、烧结、挤压和拉丝工艺制备成AgYb_2O_3线材,制得的线材具有良好的机械加工性能及物理性能。结果显示化学镀法制备的线材延伸率为17-19%,电阻率2.05-2.11/μΩ·cm,抗拉强度217-230MPa,硬度804-844N·mm~2。其机械加工性能优于共沉淀法制备的线材。
In order to improve the performance of AgYb_2O_3 electrical contact materials, it needs to control the morphology and size of Yb_2O_3 particle in electrical contact materials and improve the wettability and interface behavior of Ag-Yb_2O_3. AgYb_2O_3 composite powder was prepared by electroless plating instead of coprecipitation, accordingly.
     Effects of the morphology and size of the precursors and calcination methods on the morphology and size of Yb_2O_3 powder were studied. The Yb_2O_3 precursors with different morphology and size can be made by precipitation in solution. Strip precursor Yb_2(C_2O_4)_3·4H_2O which is well dispersed in micron dimension was got using oxalic acid as precipitating agent. And amorphous precursor Yb(OH)_3·2H_2O and Yb_2(CO_3)_3·2.5H_2O in nano dimension when using ammonia and ammonium bicarbonate as precipitating agent. Single-dispersed spherical amorphous precursor Yb(OH)CO_3·H_2O can be got using urea as precipitation. Uniform ytterbium oxalate particle with the average diameter between 1-3μm can be prepared by controlling reactant concentration, react temperature, aging temperature and aging time. According to thermogravimetry and differential scanning calorimetry curves of precursor, a non-linear calcination method was established which can alleviate reunite phenomenon in calcination. The higer the calcination temperature is,the larger size Yb_2O_3 particle got.
     Varied size ytterbia powder coated with Ag by electroless plating, AgYb_2O_3 composite powder with core/shell microstructure can be attained. The influence of powder pretreatment technics, reductant, PH values, formaldehyde concentration and react temperature was studied on plating Ag effect and the ratio of reduced Ag. It was found that Ag can be easily reduced on the surface of Yb_2O_3 powder after sensitization and activation treatment avoiding the appearnce of silver glass at the same time. Chosing right reductant can get compact and fine silver layer by controlling reducing speed. Increasing PH value and react temperature can enhance reducing ability of formaldehyde, but if they were too high, the solution will be self-reduced. When the formaldehyde concentration is more than 60ml/L, formaldehyde begins to react with ammonia. As the result, the ratio of reduced Ag rises at first ,then falls down.
     AgYb_2O_3 wire was perared by AgYb_2O_3 composite powder via billet molding, sintering, extrusion and wire drawing. The result shows that the wire prepared by electroless plating behave better than the wire by coprecipitation on mechanical performance. The performance of former was that tensile strength was 217-230MPa, and hardness was 804-844 N·mm~2,and elongation was 17-19%; specific resistance was 2.05-2.11μΩ·cm.
引文
[1] 荣命哲等.银金属氧化物(AgMeO)触头材料表面动力学特性研究[J].中国电机工程学报,1993,13(6):28-30.
    [2] 荣命哲.AgMeO触头材料表面层组织特性及其电弧侵蚀机理[D].西安:西安交通大学,1990.
    [3] 刘军.银金属氧化物电触头材料的发展及应用[J].江苏电器,2000,(1):29-32.
    [4] 李英民,薛纪文,王俊勃.AgSnO_2电触头的研究进展[J].电工材料,2003,(2):20-27.
    [5] 堵永国,白书欣,张家春.一种全新AgSnO_2触点材料的设计与制备[J].电工合金,2000,(1):15-22.
    [6] 王家真,王亚平,杨志懋.CuO添加剂对Ag/SnO_2润湿性与界面特性的影响[J].稀有金属材料与工程,2005,34(3):405-408.
    [7] Schoepf T.J., Behrens V., Honig T. Development of silver zinc oxide for general-purpose relays[J]. Transactions On Component and Packaging Technologies, 2002, 25(4):656-662.
    [8] 范莉.添加镍元素对烧结Ag-ZnO电触头性能的影响[J].新技术新工艺,2003,(2):40-41.
    [9]中村哲也,坂口理,草森裕之.Ag-ZnO系电触点材料的制造方法及该电触点材料[P].CN Patent:1300440A.2000.
    [10]王继周,徐永昌,石路.稀土贵金属电接触材料的进展[J].有色矿冶,1995,(5):35-39.
    [11]闫杏丽,陈敬超,于杰.合金内氧化法在制备银氧化铜(AgCuO)电触头材料中的应用[J].电工材料,2003,(2):28-31.
    [12]Hauner F. Ag-Fe and Ag-Fe_2O_3 contact materials for low votage switchgear[C].Proc 19th ICEC, 1998.
    [13] Behrens V., Honig T.H. An advanced silver/tin Oxide contact material[C]. Proc 17th IEEE Trans, 1994.
    [14]Joshi P.B., Murti N.S.S., Gadgeel V.L. Preparation and characterization of Ag-ZnO powders for applications in electrical contact materials[J]. Journal of Materials Science Letters, 1995, (14):1099-1011.
    [15] Ernest M.J., Kirk M. Electrically conductive material and method for making[P]. US Patent: 5846288. 1998.
    [16]张为军.银稀土氧化物触点材料的研制[D].国防科学技术大学,1999.
    [17]陈敬超,孙加林,张昆华.反应合成法制备银-二氧化锡电接触材料[P].CN Patent:99104491.1999.
    [18]雷景轩,余海峰,马学鸣.纳米相包覆AgC5电触点材料[J].中国有色金属学报,2003,13(3):685-689.
    [19]Ponibtowski M, Schultz E.D., Wirths A. The replacement of silver/cadmium oxide by silver/tin oxide in low voltage switching devices[C]. Proc 8th ICECP,1976.
    [20]Bohm W. The switching behavior of an improved Ag/SnO_2 contact material[C].Proc 27th Holm conf.elec.contacts,1981.
    [21]孙明.触头材料的电弧侵蚀特性及其数学模型研究[D].西安:西安交通大学,1992.
    [22]堵永国等.接触电阻与电工触头组元和组织的优化设计[J].电工合金,1994,(2):19-26.
    [23]堵永国等.二氧化锡颗粒增强银基复合材料的电阻率[J].功能材料,1994,25(2):150-153.
    [24]堵永国等.电接触材料的热导率[J].电工合金,1996,(2):15-17.
    [25]堵永国,杨广,张家春.电弧作用下AgMeO触头材料的物理冶金过程分析[J].电工技术学报,1998,13(4):52-56.
    [26]张纪东.均匀沉淀法制备纳米ZnO及其应用[J].株冶科技,29(3):20-22.
    [27]Wataya K., Ohyama M. Rare earth oxide, basic rare earth carbonate, making method, phosphor, and ceramic[P]. US Patent: 6677262B2. 2004.
    [28]祝桂洪.陶瓷工艺实验[M].北京:中国建筑工业出版社,1987.
    [29]Ennis J.L., Shanley E.S. On hazardous silver compounds[J]. Journal of chemical education, 1991, (68):6-8.
    [30]黄磊.陶瓷粉体化学镀银研究[D].杭州:浙江大学,2003.
    [31]陈志刚,陈建清等.二氧化铈前驱体煅烧过程中的遗传性研究[J].江苏大学学报(自然科学版),,2004.11,536-540.
    [32]陈虹锦主编.无机与分析化学[M].北京:科学出版社,2002.
    [33]杨振华.纳米氧化铈沉淀法合成及其分散性研究[D].长沙:中南大学,2004.
    [34]武汉大学化学系编著.稀土元素分析化学(上)[M].北京:科学出版社,1981.
    [35]王艳荣.沉淀法制备纳米二氧化铈[D].成都:成都理工大学,2004.
    [36]张丽英,吴志华等.晶形混合碳酸稀土的沉淀条件的研究[J].稀土,1996,17(3):61-63.
    [37]张亚文,李昂等.灼烧时间对稀土氧化物粒度、比表面积和形貌的影响(Ⅲ)[J].中国稀土学报,2002,20(2):170-172.
    [38]高玮,古宏晨.稀土粉体性能的评价体系(Ⅱ):颗粒特性的评价[J].稀土,2001,22(5):45-48.
    [39]张丽英.晶型混合碳酸稀土的沉淀条件研究[J].稀土,1996,17(3):61-63.
    [40]翟永清,张绍阳等.碳酸氢铵共沉淀法制备Gd_2O_3:Eu纳米晶及其性质研究[J].河北大学学报(自然科学版),2005,25(1):43-47.
    [41]史启祯主编.无机化学与化学分析[M].北京:高等教育出版社,1998.
    [42]涂星.纳米氧化钇的均匀沉淀法合成研究[D].广州:广东工业大学,2004.
    [43]Kolthoff I.M.,南京化工学院分析化学教研组译.定量化学分析[M].北京:人民教育出版社,1981.
    [44]刘继进,陈宗璋.煅烧方式对草酸盐前驱体制备氧化锆性能的影响[J].中国有色金属学报,2004,14(11):1833-1838.
    [45]Scherer G.W. Drying gels I. General theory[J]. Journal of Non-Crystalline Solids, 1988, 87(1-2):199-225.
    [46]Kaliszewski M.S., HeuerA H.J. Am Ceram.Soc,1990, 73(6): 150.
    [47]J.A.迪安主编.兰氏化学手册[M].北京:科技出版社,2003.
    [48] Brenner A., Riddell E.G. Nickel plating on steel by chemical reduction[J]. J.Research Natl.Bur. Standards, 1946, (37):31-34.
    [49]Baudrand D., Bengston J. Electroless Plating Process[J]. Metal finishing, 1995,9(1):55-57.
    [50]Meerakker V.D. On the mechanism of electroless plating Ⅰ:Oxidation of formaldehyde at different electrode surfaces [J]. Journal of Applied Electrochemistry, 1981, (11):387-393.
    [51] Meerakker V.D. On the mechanism of electroless plating Ⅱ:One mechanism for different reductants[J]. Journal of Applied Electrochemistry, 1981, (11):395-400.
    [52]Paunovic M., Stack C. Fundamentals of electmless coopper deposition[C].AES Inc, 1982.
    [53]Deckert C.A. Electroless copper platin a review:Part Ⅰ[J]. Platin and Surface Fin,1995,(2):48-55.
    [54]Deckert C.A. Electmless copper plating a review:part Ⅱ[J]. Plating and Surface Fin, 1995,(3):58-64.
    [55]姜晓霞,沈伟著.化学镀理论及实践[M].北京:国防工业出版社,2000.
    [56]曾为民.PCB高稳定性化学镀铜及其机理[D].北京:北京科技大学,2001.
    [57]耿新,白艳秋等.化学镀铜的物理化学[J].沈阳工业大学学报,2006,
    28(2):225-229.
    [58]Paunovic M. Kinetics and mechanism of electroless metal deposition in proceedings of the symposium on electroless deposition of metal and alloys[C].ECS Inc,1988.
    [59]黄少强.非金属粉体材料表面化学镀银的研究[D].北京工业大学,2004.
    [60]Alexander G.B., Nadkarni R.M. Method for electroless plating of ultrafine or colloidal particles and products produced thereby[P]. US Patent: 4944985.1990.
    [61]石德珂,金志浩编著.材料力学性能[M].西安:西安交通大学出版社,1998.
    [62]宁江天.AgSnO_2电触头材料的韧化机制研究[J].电工材料,2003,(4):9-12.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700