用户名: 密码: 验证码:
管板节点受拉极限承载力理论分析与设计方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
钢管截面通常用作网架和网壳结构的受力杆件或支撑钢框架中的支撑构件,为了简化制作安装,避免复杂的相贯线切割,通常将钢管开长槽孔和插入的钢板焊接,这种节点还可以用空心球或弧形板进行补强,这类以钢板为主要传力构件的节点可统称为管板节点。目前,国外有一些规范对未补强的管板节点的受拉性能作出了规定,但没有考虑到节点的补强形式。在中国,管板节点受拉性能的研究尚处于起步阶段,钢结构规范还未作出相关规定。
     本文在国内外试验资料的基础上,采用通用有限元程序ANSYS对管板节点的受拉性能进行非线性有限元分析研究,进行分析时考虑了材料特性和几何参数两个方面的影响。其中,对未补强的管板节点的几何参数分析主要考虑无量纲参数钢板插入钢管长度与钢管直径之比α对该类节点破坏模式和极限承载力的影响;对用球补强的管板节点的几何参数分析主要考虑两个无量纲参数:空心球直径与钢管外径的比值β= D /d和空心球壁厚与钢管壁厚的比值γ= t q /tg对该类节点破坏模式和极限承载力的影响;对用板补强的管板节点的几何参数分析主要考虑补强钢板覆盖角度θ和无量纲几何参数补强钢板长度与钢管外径的比值δ= Lb /d对该类节点破坏模式和极限承载力的影响。
     由于钢管截面只是部分和钢板连接,在拉力作用下,管板节点容易发生剪切滞后引起的净截面破坏。就未补强的管板节点而言,剪切滞后现象比较严重,几何参数α决定了节点的破坏模式;当节点用球补强时,由于空心球能传递部分拉力,和未补强的管板节点相比,剪切滞后现象明显减弱,空心球的几何尺寸成为影响节点受拉极限承载力的主要因素;当节点用板补强时,若弧形板覆盖角度θ≥65,则随着弧形板长度的增加,节点受力性能有明显改善。
     根据有限元分析的结果,本文拟合了管板节点受拉极限承载力的设计公式,公式中确定了各因素f u f y、α、β、γ、δ、θ对管板节点的净截面效率的影响程度,为我国钢结构规范建立管板节点受拉极限承载力设计公式及有关拉杆的设计公式的进一步完善提供了参考,同时对实际工程也有一定的参考价值。
Hollow structural Sections (HSS) are commonly used as members in space trusses and lattice shells or as bracing members in steel-framed buildings. The tubes are frequently slotted onto gusset plate to simplify fabrication and avoid profiling. These joints are known as gusset plate connections to slotted tubes which can be strengthened by welded hollow sphere or cambered plate. As yet, some design proposals abroad are only valid to gusset plate connections to slotted tubes which aren’t strengthened. In China, the study of gusset plate connections to slotted tubes is initiatory, for which there isn’t design proposal in Code for Design of steel structures.
     Based on the experimental study around the world, analysis of nonlinear finite element for ultimate tensile strength of gusset plate connections to slotted tubes with ANSYS program are carried out in this dissertation. Effects of configuration, material properties and geometrical parameters were considered in the numerical study. In the study of gusset plate connections to slotted tubes which aren’t strengthened, the influence of nondimensional parameterαon failure mode and ultimate tensile strength is mainly considered. In the study of gusset plate connections to slotted tubes which are strengthened by welded hollow sphere, the influence of nondimensional parametersβandγon failure mode and ultimate tensile strength is mainly considered. In the study of gusset plate connections to slotted tubes which are strengthened by cambered plate, the influence of dimensional parametersθand nondimensional parametersδon failure mode and ultimate tensile strength is mainly considered.
     Because only a part of the tube cross-section is connected to the plate, these gusset plate connections to slotted tubes which are under tension loading can be susceptible to failure in the net area of the HSS due to shear lag. As far as the gusset plate connections to slotted tubes which aren’t strengthened are concernde, shear lag is serious andαis decisive of failure mode. When the joints strengthened by welded hollow sphere, shear lag is obviously weaker since the welded hollow sphere can transfer a part of tension load and geometrical parameters of the welded hollow sphere are the primary factor of ultimate tensile strength. When the joints strengthened by cambered plate ,with the increasing of cambered plate’s length, there is an obvious improvement on the performance under tension loading on condition thatθ≥65.
     In the basis of the results of finite element analysis, design proposal for the ultimate tensile strength of gusset plate connections to slotted tubes is recommended, in which the influence to coefficient for shear lag net section fracture calculation of the factors such as f u f y,α,β,γ,δandθis defined. It is significant to establish design formula of gusset plate connections to slotted tubes and perfect design formula of steel tension member and it also can give some advices to practice engineering.
引文
[1] Wardenier J. Hollow Sections in structural applications.张其林,刘大康.上海:同济大学出版社,2004,1-8
    [2] CIDECT. Construction with hollow steel sections. 上 海 : 宝 钢 工 程 指 挥部,1993,2-5
    [3] Packer J A, Henderson J E. Design guide for hollow structural section connections.曹俊杰.北京:科学出版社,1997,1-4,204-205
    [4] 舒兴平.高等钢结构分析与设计.北京:科学出版社,2006,283-284.
    [5] 丁兆龙.管板节点受拉极限承载力分析和足尺试验研究:[湖南大学硕士学位论文].长沙:湖南大学,2006,1-3, 46-65
    [6] 朱正荣.搭接 N 型方圆钢管相贯节点极限承载力分析及足尺试验研究:[湖南大学硕士学位论文].长沙:湖南大学,2005,1-3
    [7] 舒兴平,朱邵宁,夏心红等.长沙贺龙体育场钢屋盖圆管相贯节点足尺试验研究. 建筑结构学报,2004,25(3):8-13
    [8] 陈以一,陈扬骥.钢管结构相贯节点的研究现状.建筑结构,2002,32(7):52-55
    [9] 吴昌栋,陈云波.钢管结构在建筑工程中的应用.工业建筑,1997,27(2):10-15
    [10] 卢 立 香 . 铸 钢 节 点 在 大 跨 度 管 桁 架 建 筑 钢 结 构 中 应 用 探 讨 . 钢 结构,2003,18(5):28-30
    [11] 魏文梅,胡维生,黄蓓.网架节点空心球承载力的分析.山东建筑工程学院学报,1994,9(3):1-6
    [12] 刘锡良,陈志华.网架焊接空心球节点破坏机理分析及承载能力试验研究.建筑结构学报,1994,15(3):38-44
    [13] 韩庆华,潘延东,刘锡良.焊接空心球节点的拉压极限承载力分析.土木工程学报,2003,36(10):1-6
    [14] 姚 念 亮 , 董 明 , 杨 联 萍 等 . 焊 接 空 心 球 节 点 的 承 载 能 力 分 析 . 建 筑 结构,2000,30(4):36-38
    [15] 李亚明,姚念亮,杨联萍等.焊接空心鼓节点在单层网壳结构中的应用研究.工业建筑,2000,30(11):52-54
    [16] 雷 宏 刚 . 介 绍 两 种 用 于 Space Deck 网 架 体 系 的 新 型 节 点 . 建 筑 结 构 学报,1997,18(6):74-76
    [17] 舒赣平,廖述江,孟宪德等.开孔焊接空心球节点承载能力试验研究与应用.建筑结构,2002,32(1):43-46
    [18] 董石麟.我国网架结构发展中的新技术、新结构.建筑结构,1998,(1):10-15
    [19] 陆志勇.塔架结构中的节点形式介绍.江苏建筑,2003,(1):41-43
    [20] 董石麟,赵阳,周岱.我国空间钢结构发展中的新技术、新结构.土木工程学报,1998,31(6):3-14
    [21] 丁芸孙,朱坊云,刘庚启等.厦门太古飞机维修基地 154m 跨机库网架的设计特点.空间结构,1996,2(1):30-36
    [22] 丁芸孙 ,朱坊云 .网架设计中常见技术问题的探讨(下) .空间结构 ,1996, 2(4):41-57
    [23] 虞辉,丁芸孙.空间结构在飞机修理坞的应用.空间结构,1998,4(4):61-63
    [24] 丁 芸 孙 . 目 前 网 架 ( 壳 ) 工 程 中 一 些 技 术 问 题 的 探 讨 . 建 筑 结构,2001,31(6):30-36
    [25] 丁芸孙.圆管结构相贯节点几个设计问题的探讨.空间结构,2002,8(2): 56-64
    [26] 丁芸孙.网(壳)架及轻钢结构设计、施工及检验的有关问题探讨(上).空间结构,2004,10(1):31-40
    [27] 陈绍蕃.钢结构设计原理.第三版.北京:科学出版社,2005,81-85
    [28] Swinden Laboratories. Slotted end plate connections. British Steel Technical, Rotherham, England, Report No. SL/HED/TN/22/-/92/D,1992
    [29] Girard C, Picard A, and Fafard M. Finite Element Modelling of the Shear Lag Effects in an HSS Welded to a Gusset Plate. Canadian Journal of Civil Engineering,1995, Vol.22:651-659
    [30] Zhao X L, and Hancock G J. Longitudinal Fillet Welds in Thin Cold-Formed RHS Members. Journal of Structural Engineering, 1995, ASCE, 121(11):1683-1690
    [31] Zhao X L, Al-Mahaidi R, and Kiew K P. Longitudinal Fillet Welds in Thin-Walled C450 RHS Members. Journal of Structural Engineering,1999, 25(8):821-828
    [32] Korol R M. Shear Lag in Slotted HSS Tension Members. Canadian Journal of Civil Engineering,1996, Vol.23:1350-1354
    [33] Cheng J J R, Kulak G L, and Khoo H. Strength of Slotted Tubular Tension Members. Canadian Journal of Civil Engineering,1998, Vol.25:982-991
    [34] Willibald S. Bolted Connections for Rectangular Hollow Sections under Tension Loading. [dissertation], University of Karlsruhe, Germany,2003
    [35] Willibald S, Packer J A, Saucedo G M, et al. Shear Lag in Slotted Gusset Plate Connections to Tubes. ECCS/AISC Workshop, Connections in Steel Structures V: Innovative Steel Connections, Amsterdam, The Netherlands,2004
    [36] Dowswell B and Barber S. Shear Lag in Rectangular HSS Tension Members.www.ascelibrary.org, 2005-07-29
    [37] AISC. Load and Resistance Factor Design Specification for Steel Hollow Structural Sections. American Institute of Steel Construction, Chicago, 2000,2-3,27-29
    [38] AISC. Specification for Structural Steel Buildings. American Institute of Steel Construction, Chicago,2005,26-31
    [39] Kirkham W J, and Miller T H. Examination of AISC LRFD Shear Lag Design Provisions. Engineering Journal, AISC,2000,3rd Quarter,83-89
    [40] Eurocode 3. Design of Steel Structures—General rules—Part 1-8:Design of Joints. Draft version. British Standards Institute, London,1993
    [41] 中华人民共和国国家标准 .钢结构设计规范 .北京 :中国计划出版社 ,2003, 36-44,203-204
    [42] 卓卫东.应用弹塑性力学.北京:科学出版社,2005
    [43] 毕继红,王晖.工程弹塑性力学.天津:天津大学出版社,2003
    [44] 刑丽.方钢管、矩形钢管焊接空心球节点的承载力与实用计算方法研究:[浙江大学硕士学位论文].杭州:浙江大学,2006,29-33
    [45] Khoo H A. Cheng J J R, and Hrudey T M. Determine Steel Properties for Large Strain from a Standard Tension Test. 2nd Material Specialty Conference of the Canadian Society for Civil Engineering,MA-029,2002
    [46] 中华人民共和国国家标准.低合金高强度结构钢.北京:中国计划出版社,1994
    [47] 中华人民共和国国家标准.优质碳素结构钢.北京:中国计划出版社,1999
    [48] Rajaprakash M. Shear Lag Effects on Welded Steel Angles and Plate. [dissertation], University of Newfoundland, Canada,2002

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700