用户名: 密码: 验证码:
黄栌林土壤微生物及其与枯萎病的关系
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
黄栌作为香山红叶景观的主体,为北京市的生态环境建设发挥着巨大的作用。但是近年来,由于缺乏有效的控制措施致使黄栌枯萎病严重发生,不仅破坏了红叶景观,而且造成黄栌的大量死亡,已成为严重影响北京市景观建设的重要生物灾害。针对黄栌枯萎病难于控制的特点,本研究通过对黄栌林地土壤性质、微生物区系及其群落结构的分析,为进一步揭示黄栌枯萎病病害发生机制和无公害治理提供基础资料。
     通过对北京地区不同立地条件下黄栌林地的土壤及根际微生物的分析,取得了如下结果:
     1.北京不同地区黄栌林地土壤微生物数量变化较大,各类群微生物数量最大值和最小值间的差距达到了2个数量级。土壤微生物数量随土层深度的加深而减少。健康黄栌林和黄栌枯萎病高发林地的土壤微生物的数量的差异显著(P<0.05)。
     2.健康黄栌和感染枯萎病的黄栌根际微生物数量具有明显的根际效应,且健康黄栌的根际效应(1.51)强于感染黄栌枯萎病的黄栌(1.42)根际效应,两者根际效应差异显著(P<0.05)。
     3.健康黄栌林地与染病黄栌林地的土壤真菌优势种群不同,健康林地的优势种有青霉属(Penicillium)、曲霉属(Aspergillus)、木霉属(Trichoderma)和粘帚霉属(Gliocladium);在黄栌枯萎病高发病林区优势菌除了以上四属外还有镰孢菌属(Fusarium);而且镰孢菌也是黄栌枯萎病高发病林区黄栌根际真菌的优势种群,这可能与感染黄栌枯萎病有关。
     4.健康黄栌林地表层土壤放线菌以白色类群、黄色类群、灰褐色类群、金色类群和烬灰类群为优势种群,其数量总和占到表层土壤放线菌总数量的88.8%;中层和下层的优势类群变化不大,但各类群所占比例有所上升,占到土壤微生物总数的93.73%和94.51%;而在发病黄栌林地中以白色类群、黄色类群和灰褐类群为优势类群,这三种类群的总和分别占林地表、中、下层土壤放线菌总数量的72.07%、74.88%和76.57%。
     5.自香山健康黄栌植株分离出20个属的内生真菌,其中从茎中分离出15个属,主要有壳二孢属(Ascocgyta)、尾孢属(Cercospora)、曲霉属(Aspergillus)等;从叶中分离出8个属,主要拟茎点菌属(Phomopsis)、小球壳菌属(Mycosphaerella)等;在根中分离出3个属,为青霉属(Penicillium)、曲霉属、柱孢属(Cylindrocarpon)。茎中所分离出的内生菌最多,其次是叶,而根部最少,且青霉属、曲霉属遍布于植物体内。
     6.用香山黄栌林土壤中分离出的4株木霉属(Trichoderma)真菌与黄栌枯萎病菌进行平板拮抗试验,发现T.harzianum(TH1,TH2)、T.atroviride和T.inhamatum均对黄栌枯萎病菌产生拮抗作用,其中以T.inhamatum拮抗作用最为明显。
Cotinus coggyria(L.)Soop, which is the main specie of red leaf landscape in Xiangshan Park, plays an important role in ecological development of Beijing. However, lack of effective control measure, the Verticillium wilt which happened in recent years not only destroyed the red leaf landscape but also lead to the death of C. coggyria on the large scale, and it had become the serious biological disaster that influenced the landscape construction in Beijing. Therefore, in order to better understand of the disease mechanism and provide the basic theory support for ecological control and non-harmful management, this paper was studied the soil properties, the population and structure of soil and rhizosphere microorganism in the C. coggygria plantation in Xiangshan Park, Badachu, Badaling in Beijing. Through the analysis on soil and rhizosphere microorganism in seven stands of C. coggyria plantation in Beijing, the conclusion was made as follow:
    1 The number of soil microorganisms in different stand changed largely, and the maximum and minimum of the soil microorganism had achieved 2 orders of magnitude. The number of microorganisms decreased with the increase of the soil depth. The number had significant difference in health stand and wilt disease infected stand.
    2 The root of C. coggygria had Rhizosphere Effects after studied the rhizosphere microorganism of the health and infected plant. The effect in health one was much stronger than the infected plant, and the effect between the health and infected plant had significant difference.
    3 The soil microorganisms in health forest stand and forest stand infected by the C. coggygria wilt were analyzed, the results indicated that the dominant fungi population is different in health and infected stand because the population of Fusarium is dominant in infected stand in contrast to health stand. The dominant population of soil actinomyces in two kind of stand was also different.
    4 The dominant populations of actinomyces isolated from the surface of soil in the health stand were white colony, yellow colony, dust-color colony, golden colony and grey colony, and the amount of these colonies occupied 88.88% of the total soil actinomyces. The populations in the middle layer and the bottom layer also contained these five colonies, and the proportion of these colonies increased a little bit. However, the amount of yellow and dust-color colony increased in contrast to decrease of other colonies that isolated from the surface of the stand infected by C.coggygria wilt. During the study, the dominant population of rhizosphere fungi also exist changes in the health forest and forest infected by Verticillium wilt.
    5 Endophytic fungus from 20 gena were isolated from health plant of C.coggygria. Among these gena, 15 gena such as Ascochyta, Cercospora, Aspergillus and so on were isolated from stem, and 8 gena isolated from leaf mainly included Phomopsis,Mycosphaerella,Penicillium,Aspergillus and Cylindrocarpon were isolated from root. More endophytic fungus were isolated from stem, and the gena of Penicillium and Aspergillus can be isolated from all parts of the plant.
    6 The plate antagonistic experiment on the pathogen of C. coggygria wilt was taken by using the 4 strains of Trichoderma isolated from the soil in Xiangshan Park. All four strains include 2 strains of T. harzianum, 1 strain of T. atroviride and 1 strain of T. inhamatum had antagonistic function to the pathogen. Among these strains, the antagonistic function from the strain of T. inhamatum was significant.
引文
1.北京农业大学植保系植物生态病理教研室.植物根际生态学与根病生物防治进展[M].北京:中国人民大学出版社,1991:95-265
    2.蔡艳,薛泉宏,陈占全,等.青海省保护地辣椒根际土壤和根表放线菌研究[J].应用与环境生物学报,2003,9(1):92-96
    3.蔡燕飞,廖宗文,罗洁等.不同质地土壤抑病性和微生物特征[J].农业环境科学学报,2003,22(5):553-556
    4.蔡燕飞,廖宗文,章家思等.生态有机肥对番茄青枯病及土壤微生物多样性的影响[J].应用生态学报,2003,14(3):349-353
    5.陈华癸等.土壤微生物学[M].上海:上海科学技术出版社,1981
    6.陈立杰,刘惕若,李海燕,等.除草剂对大豆幼苗根腐病及其土壤微生物的影响[J].大豆科学,1999,18(2):115-119
    7.陈立新.落叶松人工林施肥对土壤酶和微生物的影响[J].应用生态学报,2004,15(6):1000-1004
    8.陈文新主编.土壤和环境微生物学[M].北京:北京农业大学出版社.1990
    9.陈晓斌,张炳欣.植物根围促生细菌作用机制的研究进展[J].微生物学杂志,2000,20(1):38-44
    10.陈晓蕾,张忠泽.微生物的ARDRA检测[J].微生物学杂志,1999,19(4):40-43
    11.陈晓倩,殷浩文.微生物群落多样性分析方法的进展[J].上海环境科学,2003,22,(3):213-222
    12.刁治民.西宁地区春小麦土壤微生物根际效应的研究[J].土壤肥料,1996,(2):27-30
    13.杜晓华.观赏植物马尾杉内生菌及其次生代谢产物对AChE的抑制活性[J].西北农林科技大学,2003,91
    14.冯健,张健.巨桉人工林地土壤微生物类群的生态分布规律[J].应用生态学报,2005,16(8):1422-1426
    15.高旭辉.茶树根际微生物与根际效应[J].茶叶通讯,2000,1:35-38
    16.耿玉清,孙向阳.北京卧佛寺地区土壤系统分类的研究[J].北京林业大学学,1998,20(4):31-35
    17.胡承彪.龙胜里骆杉木幼林土壤微生物及生化特性研究[J].林业科技通讯,1992(12):4-7
    18.胡小加,黄沁洁,张学江,等.油菜内根圈中几类微生物群体量比较的研究[J].植物营养与肥料学报,1997,3(1):49-54
    19.胡小加,张学江,黄沁洁.油菜内根圈中几类微生物群体数量的比较[J].中国油 料,1996,18(2):55-58
    20.胡延杰,翟明普,武勤文,等.杨树刺槐混交林及纯林根际微生物数量及其生化强度的季节性动态研究[J].士壤通报,2002,33(3):199-202
    21.胡元森,吴坤,刘娜,陈红歌,贾新.黄瓜不同生育期根际微生物区系变化研究[J].中国农业科学,2004,37(10):1521-1526
    22.贾夏,韩士杰,周玉梅等.不同二氧化碳浓度条件下红松和长白赤松幼苗根际土壤微生物数量研究[J].应用生态学报,2005,16(7):1295-1298
    23.姜培坤,蒋秋怡,董林根,等.杉木檫树根际土壤生化特性比较分析[J].浙江林学院学报,1995,12(1):1-5
    24.焦如珍,杨承栋.杉木人工林不同发育阶段根际与非根际土壤微生物变化趋势[J].林业科学,1999,35(1):53-59
    25.雷增普.北京地区黄栌黄萎病病菌的研究[J].北京林业大学学报,1993,16(8):88-93
    26.李彩华,靳学慧,台莲梅.不同农业措施对土壤微生物的影响[J].黑龙江八一农垦大学学报.2005,17(4):31-34
    27.李彩华,靳学慧,台莲梅.长期定点下不同农业措施对土壤微生物区系的影响[J].黑龙江八一农垦大学学报,2006,18(2):19-22
    28.李长松.拮抗性细菌生物防治植物土传病害的研究进展[J].生物防治通报,1992,8(4):168-172.
    29.李阜棣主编.土壤微生物学[M].北京:中国农业出版社,1996
    30.李洪连,王守正,张明智等.不同抗性棉花品种根际真菌区系分析与及其对棉花黄萎病菌的抑制作用[J].棉花学报,1992,4(2):73-76
    31.李洪连,王守正.抗感枯萎病棉花品种根际真菌区系分析[J].河南农业大学学报,1991,25(4):422-432
    32.李洪连,袁红彼,王烨等.根际微生物多样性与棉花品种对黄萎病抗性的关系研究[J].植物病理学报,1998,28(4):341-345
    33.李洪连,袁红鼓,王烨等.不同抗性品种真菌区系分析与及其对棉花黄萎病菌的抑制作用[J].植物病理学报,1999,29(3):242-246
    34.李社增,马平,刘杏忠等.利用拮抗细菌防治棉花黄萎病[J].华中农业大学学报,2001,20(5):422-425
    35.李雪玲,厉云,张天宇.利用拮抗真菌防治棉花黄萎病[J].棉花学报,2003,15(1):26-28
    36.李延茂,胡江春,张晶等.杉木连栽土壤微生物多样性的比较研究[J].应用生态学报,2005,16(7):1275-1278
    37.李元,杨济龙,王勋陵等.紫外辐射增加对春小麦根际土壤微生物种群数量的影响[J].中国环境科学,1999,19(2):157-160
    38.李振高,潘映华,李良漠.不同基因型小麦根际细菌及酶活性的动态研究[J].土壤学报,1993,30(1):1-8
    39.李志辉,李跃林,杨民胜等.桉树人工林地土壤微生物类群的生态分布规律[J].中南林学院学报,2000,20(3):24-28
    40.廖继佩,林先贵,曹志洪等.丛枝菌根真菌与重金属的相互作用对玉米根际微生物数量和磷酸酶活性的影响[J].应用与环境生物学报,2002,8(4):408-413
    41.刘世亮,翟东明,介晓磊等.不同磷源对小麦根际生物活性及其根际效应的影响[J].河南农业科学,2002,11:26-30
    42.刘映良,熊应鸿,谢双喜等.11年生马尾松土壤微生物区系研究[J].山地农业生物学报,2005,24(3):199-204,
    43.陆勇军,陆大京.广州市郊蔬菜根际真菌物种多样性[J].生态科学,1999,18(1):56-58
    44.罗安程,T.B.Subedi,章永松等.有机肥对水稻根际土壤中微生物和酶活性的影响[J].植物营养与肥料学报,1999,5(4):321-327
    45.罗海峰,齐鸿雁,薛凯等.PCR-DGGE技术在农田土壤微生物多样性研究中的应用[J].生态学报,2003,23(8):1570-1575
    46.罗明,单娜娜,文启凯等.几种固沙植物根际土壤微生物特性研究[J].应用与环境生物学报,2002,8(6):618-622
    47.M.亚历山大.土壤微生物导论[M].北京:科学出版社,1983.
    48.马汇泉,靳学慧,孙伟萍等.大豆根际真菌类群对大豆幼苗生长的影响[J].中国油料,1996,18(3):54-55
    49.马萍,张玲琪,魏蓉城等.西双版纳橡胶、胡椒和咖啡根际土壤放线菌区系研究.云南大学学报(自然科学版),1997,19(4):493-496
    50.N.沃尔克.土壤微生物学[M].北京:科学出版社,1981
    51.彭佩钦,吴金水,黄道友等.洞庭湖区不同利用方式对土壤微生物生物量碳氮磷的影响[J].生态学报,2006,26(7):2261-2267
    52.齐鸿雁,薛凯,张洪勋.磷脂脂肪酸谱图分析方法及其在微生物生态学领域的应用[J].生态学报,2003,23(8):1576-1582
    53.邵玉琴,赵吉,廖仰南.内蒙古库布齐沙带东段油蒿(Arremisia ordosica)根际土壤微生物类群数量的研究[J].内蒙古大学学报(自然科学版),1996,27(1):98-102
    54.沈萍.微生物学[M].北京:高等教育出版社,2000.
    55.石磊岩,籍秀琴,王波.黄栌黄萎病病菌生理特性研究初报[J].植物保护,1993,4:2
    56.石磊岩,籍秀琴,王波.黄栌黄萎病与棉花黄萎病生理特性比较[J].研究通讯,1993,4:89
    57.苏雪,张辉,冯克宽.榆中县北山干旱地区不同作物根际放线菌的分离与鉴定[J].西北师范大学学报(自然科学版),2005,41(3):67-70
    58.谭周进,肖启明,杨海君等.旅游对张家界国家森林公园土壤酶及微生物作用强度的影响[J].自然资源学报,2006,21(1):133-139
    59.谭周进,戴素明,谢桂先等.旅游踩踏对土壤微生物生物量碳、氮、磷的影响[J]。环境科学学报,2006,21(11):1921-1926
    60.田呈明,梁英梅.华北落叶松人工林土壤真菌区系研究[J].西北林学院学报,1996,11(增):137-142
    61.田呈明,刘建军,梁英梅等.秦岭火地塘林区森林根际微生物及其土坡生化特性研究[J].水土保持通报,1999,19(2):19-22
    62.田育军等.长期不同施肥土壤微生物态氮为土壤供氮指标的研究[J].甘肃农业大学学报,2000,35(1):24-28
    63.汪海珍,徐建民,谢正苗.甲磺隆结合态残留物对土壤微生物的影响[J].农药学学报,2003,5(2):69-78
    64.王波,吕德国,杜国栋.甜樱桃根际微生物的初步研究[J].北方果树,2004(增刊):71-72
    65.王洪霞,孙庆元.双氰胺对土壤微生物种群数量的影响[J].安徽农业科学,2006,34(1):113-114
    66.王开真,肖崇刚,孔德英等.番茄根区优势菌及青枯拮抗细菌的动态变化[J].西南农业大学学报(自然科学版),2005,27(2):169-172
    67.王勐骋,杨永华,姚健.利用RAPD分子标记研究农用化学品污染土壤微生物群落的分子多样性[J].南京大学学报(自然科学),2000,36:518-522.
    68.王平,李阜棣,胡正嘉.小麦内根围中几类微生物群体数量比较的研究[J].华中农业大学学报,1994,13(4):318-324
    69.王锐萍,刘强,彭少麟等.林开豪鼎湖山森林凋落物和土壤微生物数量动态[J].武夷科学,2006,22:82-87
    70.王珊,李廷轩,张锡洲等.设施土壤中微生物数量及其生物量碳的变化研究[J].中国农学通报,2005,21(4):198-225
    71.王守正,王海燕,李洪连等.植物微生物区系和植物抗病性研究.河南农业科学,2001,5:20-23
    72.王元贞,潘廷国,柯玉琴等.施用废菌棒对甘蔗菌根、根际微生物和土壤肥力的影响[J].福建农学院学报,1992,21(4):424-429
    73.吴金水,林启美,黄巧云等.土壤微生物生物量测定方法及其应用[M].北京:气象出版社,2006:3-12
    74.吴金水.土壤有机质及其周转动力学.中国南方土壤肥力及栽培作物施肥[M].北京:科学出版社,1991:28-62
    75.夏北成.土壤微生物群落及其活性与植被的关系[J].中山大学学报(自然科学版),1998, 37(3):94-98
    76.向万胜,吴金水,肖和艾等.土壤微生物的分离、提取与纯化研究进展[J].应用生态学报,2003,14(3):453-456
    77.向伟,李振基,龙寒等.不同群落类型的长苞铁杉林的根际微生物研究[J].厦门大学学报(自然科学版),2005,44(9):62-65
    78.肖育贵,胡震宇.不同林型土壤微生物种群数量及养分变化分析[J].四川林业科技,1997,18(4),32-35
    79.徐丽华,杨宇容,姜成林.云南土壤放线菌生态分布的研究[J].微生物学报,1996,36(3):220-226.
    80.许光辉,郑洪元.土壤微生物分析方法手册[M].北京:农业出版社,1986
    81.许景伟,王卫东,李成姜等.不同类型黑松混交林土壤微生物、酶及其与土壤养分关系的研究[J].北京林业大学学报,2000,22(1):51-55
    82.杨旺主编.森林病理学[M].北京:中国林业出版社,1996
    83.杨喜田,宁国华,董惠英等.太行山区不同植被群落土壤微生物学特征变化[J].应用生态学报,2006,17(9):1761-1764
    84.杨永华,姚健,华晓梅.农药污染对土壤微生物群落功能多样性的影响[J].微生物学杂志,2000,20(2):23-26
    85.杨永华,姚健.分子生物学方法在微生物多样性研究中的应用[J].生物多样性,2000,8(3):337-342
    86.杨毓峰,袁红旭.紫外线UV-B辐照花生的生物效应[J].西南农业大学学报,2001,23(4):356-359
    87.姚健,杨永华,沈晓蓉等.农用化学品污染对土壤微生物群落DNA序列多样性影响研究[J].生态学报,2000,20(6):1021-1027
    88.叶志毅,屠振力.桑树根的分泌物和根际微生物的研究[J].蚕业科学,2005,31(1):18-21
    89.俞慎,何振立,陈国潮等.不同树龄茶树根层土壤化学特性及其对微生物区系和数量的影响[J].土壤学报,2003,40(3):433-439
    90.袁虹霞,李洪连,王振跃等.利用土壤拮抗性微生物防治棉花枯萎病[J].中国生物防治,1998,14(4)156-158
    91.湛方栋,陆引罡,关国经等.烤烟根际微生物群落结构及其动态变化的研究[J].土壤学报,2005,42(3):488-494
    92.张硕成.木霉菌生态学及其在生物防治中的应用[J].应用生态学报,1991,2(1):85~88
    93.张晓海,杨春江,王绍坤等.烤烟施用菜籽饼后根际微生物数量变化研究[J].云南农业大学学报,2003,18(1):14-19
    94.赵璇,王建龙.氯酚污染土壤的生物强化修复及其微生物种群动态[J].环境科学学报,2006,26(5):821-827
    95.赵勇,李武,周志华等.应用PCR-RFLP及PCR-TGGE技术监测农田土壤微生物短期动态变化[J].南京农业大学学报,2005,28(3):53-57
    96.郑志成,周美英,姚炳新.红树林根际放线菌的组成及生物活性[J].厦门大学学报(自然科学版),1989,28(3):306-310
    97.中国科学院南京土壤研究所微生物室.土壤微生物研究法[M].北京:科学出版社,1985
    98.周存宇.凋落叶分解对土壤微生物数量和组成的影响[J].湖北民族学院学报(自然科学版),2006 24(4):335-338
    99.周德庆.微生物学教程[M].北京:高等教育出版社,2002
    100.朱南文,胡茂林.乐果对土壤中酶活性和微生物数量的影响[J].上海环境科学,1997,16(4):43-45
    101.左华清,王子顺.柑桔根际土壤微生物种群动态及根际效应的研究[J].生态农业研究,1995,3(1):39-47
    102. A.H.C. van Bruggen et al. Detection, Prediction and Disease Management, Verticillium Wilt in Trees[M],2002
    103. Al-Ahmad. M.A. The solar chamber:an innovative technique for controlling Verticillium wilt of olive[J]. Bulletin OEPP, 1993,23(3):531-535
    104. Al-Ahmad. M.A.,Duski. A. and Nasan. H. Effect of dry heating on growth of Verticillium dahliae on PDA media and on its survival in diseased olive branches[J]. Proceedings of the 7th International Verticillium Symposium. 1997,85
    105. Blok W.J.,Lamers J. G., Termorshuizen A. T. and Bollen G. J..Control of soilborne plant pathogens by incorporating fresh organic amendments followed by tarping[J].Phytopathology, 2000,90:253-259
    106. Carder J H, Morton A A, Tabrett A M and Barbara D J. Detection and differentiation by PCR of subspecific groups within two Verticillium species causing vascular wilts in herbaceous hosts[J]. Modern Assays for Plant Pathogenic Fungi:Indentification, Detection and Quantification, 1994,91-97
    107. Chen C R et al. Links between soil microbial dynamics and phosphorus availability in two tropic forest of varying P forest in New Zealand[J]. Forest Ecol Manage, 2003,177:539-557
    108. Erb R W, Wagner Dobler L. Detection of polychlorinated biphenyl degradation genes in polluted sediments direct DNA extraction and polymerase chain reaction[J]. Appl Environ Microbiol, 1993, 59(12): 4065-4073
    109.Gilad. Z. and Borochov. A.. Hot water treatment of Liatris tubers[J]. Scientia Horticuleurae , 1993, 56(1),61-69
    110. Goud J. C. and Termorshuizen A. J. Quality of methods to quantify microsclerotia of Verticillium dahliae in soil[J]. European Journal of Plant Pathology , 2003,109:523-534
    111.Goud J. C., Termorshuizen A. J. and A. H. C. van Bruggen. Verticillium wilt in trees:Damage thresholds, spatial and temporal aspects[J]. 2003, 73-86
    112. Heppner C and Heitefuss R. Development of an enzyme-linked immunosorbent assay(ELISA)for Verticillium dahliae detection in soil[J]. Diagnosi and Identification of Plant Pathology, 1997, 105-108
    113.HeuerH, Krsek M. Baker P. et al. Analysis of actinomycete communities by specific amplification of gene coding 16S rRNA and gel electrophorcsis separation in denaturing gradients[J]. Applied and Environmental Microbiology, 1997, 63:3233-3241
    
    114. Joergensen RG, Mueller T. The fumigation-extraction method to estimate soil microbial biomass: calibration of the ken vaule[J]. Soil Biol Biochem, 1996, 28:33-37
    
    115. Katan J., Greenberger A., Alon H. , and Grinsterin, A. Increasing soil temperatures by mulching for the control of soil-brone diseases[J]. Phytoparasitica, 1975, 3:69.
    
    116. KEEL C , DEFAGO G. Interactions between beneficial soil bacteria and root pathogens :mechanisms and ecological impact[J]. In: Gange AC , Brown VK, eds. Multitrophic Interactions in Terrestrial System. Oxford: Blackwell Science ,1997: 27-47.
    
    117. Li KN, Rouse DI and German TL. PCR primers that allow intergeneric differentiation of Ascomycetes and their application to Verticillium spp. [J]. Applied and Environmental Microbiology ,1994,60:4324-4331
    
    118. Li KN, Rouse DI, Eyestone EJ and German TL. The generation of specific DNA primers using random amplifiled polymorphic DNA and its application to Verticillium dahliae[J] .Mycological Research , 1999, 103:1361-1368
    
    
    119. Lobet Brossa E., Rossello Mora R, Amann R.. Microbial community composition of Wadden Sea sediments as revealed by fluorescence in situ hybridization[J]. Appplied and Environmental Microbiology, 1998, 64:2691-2696
    
    120. Mahuku GS, Platt HW and Maxwell P. Comparison of polymerase chain reaction methods weth plating on media to detect and identify Verticillium wilt pathogens on potato[J]. Canadian Journal of Plant Pathology , 1999, 21:125-131
    121.Manjaiah K M et al. Soil organic carbon stocks, storage profile and microbial biomass under different crop management systems in a tropical agricultural ecosystem[J]. Biol. Fertil. Soils, 2000, 31:273-278
    
    122. Martinez murcia J., Acinass G. , Rpdriguezvalemf. Evaluation of prokaryotic diversity by restriction digestion of 165 rDNA directly amplified from hypersaline environments [J]. FEMS Microbiol Ecol, 1995, 17:247.256
    
    123. Masso-Deya A ., Odelsond A, Hickeyr F. . Bacterial community fingerprinting of amplified 16S and 16S-23S ribosomal DNA gene sequence and restriction endonucleasc analysis(ARDRA) [J]. Mol Microb Ecol. Manual, 1995, 3. (2):1-18
    
    124.Mercado Blanco J. , Rodriguez Jurdo D. , Perez Artes E. and Jimenez Diaz RM. Detercion of the nondefoliating pathotype of Verticillium dahliae in infected olive plants by mested PCR[J]. Plant pathology, 2001, 50:609-619
    125.Murray A E, Preston C M, Massawa R, Taylor L T. Blakis A, Delong E F, Seasonal and spatial variability of bacterial and arcchaeal assemblages in the coast waters near Anvers Island[J]. Applied and Environmental Microbiology. 1998,64:2585-2595
    126. MuyzerG, DewaaleC, Uitterlinden A G.. Profiling of Complex Microbial Population by Denaturing Gradient Gel Electrophoresis Analysis of Polymerase Chain Reaction-amplified Genes Encoding for 16SrRNA[J]. Appl Environ Microbiol, 1993, 59:695-700
    127.N Bel U, Engelenb, Felskea, et al. Sequence heterogeneities of genes encoding 165 rRNAs in Paenibacillus Polymyxa Detected by Temperature Gradient Gel Electrophoresis[J]. J Bacteriol , 1996,178:5636-5643
    
    128. Nagtzaam MPM, Termorshuizen AJ and Bollen GJ. The relationship between soil inoculum density and plant nfection as a basis for a quantitative bioassay of Verticillium dahliae[J] . European Journal of Plant Pathology, 1997, 103:597-605
    
    
    129. Nazar RN, Hu X, Schmidt D, Culham D and Robb J. Potential wse of PCR-amplified ribosomal intergenic sequences in the detection and differentiation of verticillium wilt pathogens[J]. Physiological and Molecular Plant Pathology, 1991, 39:1-11
    
    130. Platt H W, Mahku G S, Maxwell P and MacLean V. Detection techniques for research on Verticillium species in potato soils[J]. Advances in Verticillium :Research and Disease Mangement, 2000, 140-143
    
    131.Ritz K, Griffitths B S. Potential application of a community hybridization technique for assessing changes in the population structure of soil microbial communitiestJ]. Soil Biology and Biochemistry, 1994,26:963-971
    132.Roane TM . Pepper IL . Microbial Responses to Environmentally Toxic Cadmium [J]. Microb Ecol, 1999, 38(4): 358—364.
    133.Robb J and Nazar RN. Application of PCR - based diagnostics to monitor Verticillium-nematode disease complexes in the field[J]. 7th International Verticillium Symposium., 1997, 16
    
    134. Sandaa R. A. , TorsvikV, Enger O et al. Analysis of bacterial communities in heavy metal-contaminated soils at diferent levels of resolution [J]. FEMS Microbiol Ecol, 1999, 30: 237—251
    
    135. Saylor G S, Layton A C. Environmental application of nucleic acid hybridization[J]. Annual Review of Microbiology, 1990,44:625-648
    
    136. Schwieger F, Tebber C. A new approach to utilize PCR-Single—Strand conformation polymorphism for 16SrRNA-based microbial community analysis[J]. Appl Environ Microbiol.1998, 64:4870-4876
    
    137. Soesanto L. Ecology and Biological Control of Verticillium dahliae. PhD Thesis,Wageningen University, Wageningen, 2000
    
    138. Susan J Grayston, Heinz Rennenberg. Assessing effects of forest management on microbial community structure in a central European beech forest[J]. Can. J. For. Res. 2006, 36:2595-2604
    
    139. Torsvik V, Dvreas L. Microbial diversity and function in soil: From genes to ecosystems[J]. Current Opinion Microbiol, 2002, 5: 240—245.
    
    140. Wheeler T A, Madden L V, Riedel R M, and Rowe R C . Distribution and yield-loss relations of Verticillium dahliae, Pratylenchus penetrans, P. scribneri, P. crenatus, and Meloidogyne hapla in commercial potato fields [J]. Phytopathology 1994, 84: 843-852.
    
    141. Xia X, Bollinger J. Ogram A. Molecular genetic Analysis of the response of three soil microbial communities to the application of 2,4-D[J]. Mol Ecol, 1995,4:17-28
    
    142. Yang Y, Zeyer J. Specific detection of dehalococcoides species by fluorescence in situ hybridization with 16S rRNA—targeted oligonucleotide probes[J]. Appl Environ Mierobiol, 2003, 69: 2879—2883.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700