用户名: 密码: 验证码:
救生缓降器参数化分析及动力学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文针对吉林恒安电子机械有限公司生产的产品五型救生缓降器在设计应用过程中所出现的问题进行了研究。从理论上,对缓降器整体结构进行了改进设计,确定了缓降器的技术参数。为了缩短产品的研发周期、降低生产成本,本文利用UG的二次开发功能,基于VC++语言,建立了缓降器的计算机辅助设计系统,包括缓降器的参数化建模和优化设计模块,事实证明此系统对于缓降器的研发工作具有很大的实用价值。利用此系统对改进的缓降器结构进行了体积最优化,在满足强度的条件下,减小了体积,降低了生产成本,同时根据优化结果,完成缓降器的参数化建模工作,并基于在UG中建立的虚拟样机,利用UG/Motion、UG/Structure模块,分析了缓降器的动力特性,并对缓降器主要受力部件进行了有限元分析。通过实验分析,验证了研究、仿真分析结果的正确性,改进了五型救生缓降器的不足之处,最终研究设计出更加优秀的产品六型救生缓降器。本文研究的成果对以后缓降器的设计研发工作将具有重大的指导意义。
A lifesaving descending device is for emergent escape from a high building, and it is widely used in hotel、apartment、hospital、house and so on. It can be used as building rescue device when emergency happens and used as high altitude working device usually.
     Descending device is a kind of new product which is developed in these years, and there hasn’t been an integrated design system. A lot of deficiencies come forth in practice, for instance, short service life、occurrence of great impact when people falling to the ground、complicated structure、large volume、inconvenient operation、high price and so on. Descending device which is a product of Jilin Hengan Electron Machinery Co.Ltd is redesigned、optimized and analysed. On the condition of satisfying the material strength, the volum、the developing cycle and the cost are reduced. A better one which named JSH-100/35-30 is achieved and the deficiencies are improved. The following contents are studied in this thesis.
     (1) Theoretically, descending device’s structure is redesigned and improved、technical parameters are determined based on the original design parameters and theoretically analyzes the improved gears whether satisfy the intensity requests. Theoretical calculation results will be used to examining the results of simulation and lay the foundation for the following analysis.
     (2) For the sake of making the course of design automatic and shorting the develop cycle, in this thesis, a descending device’s CAD system which comprises 3D parametric modeling and optimum design function is built based on UG/Open API、UG/Open MenuScript、UG/Open UIStyler、VC++, etc. Descending device’s 3D parametric modeling and optimum design are accomplished with the system, and satisfying results that the volume is 0.897 times the size of JSH-100/35-30 descending device、reducing the cost、shortening the develop cycle are achieved. Through comparing the results of program with results which are achieved from MATLAB’s optimization box, proved that the program is available. The CAD system can be used in descending device’s design and have great practical value.
     (3) A virtual prototype is built using UG/Motion module based on the results of the optimization above. Through dynamics simulation analysis, component’s contact dynamic and kinematic characteristics are accurately displayed while the virtual prototype working and computer simulating of the gear dynamic contact force is realized. The speed of rope wheel is 0 .89m/sand the transmission ratio error is 3.16% which is smaller than 4% , from which we can find that the optimized structure satisfies the design requests. Through experimental analysis, we can find that the experimental results are consistent with the simulation results which will provide the reliable reference data for the product research.
     (4) The finite element analysis of principal axis that is the supporting component and the planetary gear sets are performed using UG/Structure module, and the biggest stress of principal axis and the biggest tooth root bending stress、contact stress of tooth surface are achieved. From analysis and the comparison of theoretical calculation and simulation results, we can find that the product which is optimized based on the original satisfies the material intensity requests and the manufacture implementation feasibility is guaranteed.
     Research fruits and methods in this thesis have important theory and project reference value. Using the virtual prototype to replace the physical prototype, we can not only confirm the design feasibility in real time, simulate its future active status and movement behavior and discover the design errors in time, confirm the reliability of its function and performance, make the design process automatic, avoid the expensive and time consuming physical experiment, but also have the product met the design requests and the manufacture implementation feasibility is guaranteed. There will be great practical significance to reducing the manufacturing times of physical prototype、product development cycle、research and development cost, enhancing the production efficiency and product quality.
引文
[1] 陈大元. 实用新型专利:钢丝绳直接传动式高楼逃生缓降器[J]. 中国科技成果,2004(5):59-59
    [2] 夏云凤. 双轴救生缓降器[J]. 中国个体防护装备,2006(2):52-52
    [3] 陈宏毅. 论当前国产缓降器质量及改进措施[J]. 消防技术与产品信息,1991(7):43-46
    [4] 渐开线齿轮行星传动的设计与制造编委会. 渐开线齿轮行星传动的设计与制造[M]. 北京:机械工业出版社,2002.5
    [5] 成大先. 机械设计手册 第3卷[M]. 北京:化学工业出版社,2002.1
    [6] 方昆凡. 工程材料手册 黑色金属材料卷[M]. 北京:北京出版社,2001.1
    [7] 孙桓,陈作模. 机械原理[M]. 北京:高等教育出版社,2001.5
    [8] 齿轮手册编委会. 齿轮手册 上册[M]. 北京:机械工业出版社,1990.1
    [9] 周欣,张秀华,冯志友,崔长清. 齿轮类零件参数化CAD研究现状分析[J]. 佳木斯大学学报:自然科学版,2006(2):222-225,241
    [10] 陈德人. 参数化设计模型与方法[J]. 浙江大学学报:自然科学版,1995(2):179-183
    [11] 李素萍,刘根生. 基于UG的参数化设计方法及程序设计技术[J]. 现代机械,2005(5):57-59
    [12] 张冶,洪雪,张泽帮. Unigraphics NX 参数设计实例教程[M]. 北京:清华大学出版社,2003.8
    [13] 黄翔,李迎光. UG应用开发教程与实例精解[M]. 北京:清华大学出版社,2005.4
    [14] 王庆林. UG/OPEN GRIP 实用编程基础[M]. 北京:清华大学出版社,2002.1
    [15] 朱凯,黄业清,冯辉. UG中文版机械设计实战训练[M]. 北京:人民邮电出版社,2004.10
    [16] 董正卫,田立中,付宜利. UG/OPEN API编程基础[M]. 北京:清华大学出版社,2002.8
    [17] 刘晖. 基于参数化的齿轮传动接触有限元分析[D]. 大连:大连交通大学,2004.12
    [18] Sherman Y.T.Lang. Graph-theoretic modelling of epicyclic gear systems[J]. Mechanism and Machine Theory,2005(5):511-529
    [19] 白剑锋,贺靠团. 基于UG的渐开线圆柱齿轮参数化设计[J]. 现代制造工程,2006(2):118-121
    [20] 韩翔. 基于UG的2K-H行星减速器计算机辅助设计[D]. 成都:西南交通大学,2004.5
    [21] 张漪. 基于UG、VC++变速器参数化齿轮设计系统[D]. 武汉:武汉理工大学,2002.2
    [22] 陈立周. 机械优化设计方法[M]. 北京:冶金工业出版社,2005.3
    [23] 王述彦,马鹏飞. 2K-H 型行星齿轮系传动的优化设计[J]. 建筑机械化,2002(5):36-38
    [24] 毛正祥. 单级式缓降器优化设计[J]. 重庆建筑工程学院学报,1991(1):72-80
    [25] 刘鸿文. 材料力学[M]. 北京:高等教育出版社,2002.12:173-187
    [26] 梁尚明,殷国富. 现代机械优化设计方法[M]. 北京:化学工业出版社,2005.7
    [27] 许春田. 新型2K-H少齿差传动的参数优化设计与实际受载齿数研究[D]. 鞍山:鞍山科技大学,2004.3
    [28] Chien-Hsing Li,Hong-Shun Chiou,Chinghua Hung. Integration of finite element analysis and optimum design on gear systems[J]. Finite Elements in Analysis and Design,2002(3):179-192
    [29] 崔华林. 机械优化设计方法与应用[M]. 辽宁:东北工学院出版社,1989.8
    [30] 苏金明,张莲花,刘波. MATLAB工具箱应用[M]. 北京:电子工业出版社,2004.1
    [31] 林建东,原思聪. 虚拟样机技术在 ADAMS 中的实践[J]. 机械研究与应用,2006(6):66-68
    [32] 李付鹏. 虚拟样机技术在工程车辆中的应用[J]. 叉车技术,2005(1):24-26
    [33] 李勇,曾志新等. 虚拟样机技术在小型农用装载机设计中的应用[J]. 农业工程学报,2004(5):134-137
    [34] 吴镇,吴庆鸣. 运用虚拟样机技术对四连杆组合臂架变幅轨迹的仿真研究[J]. 武汉理工大学学报:交通科学与工程版,2004(2):226-228
    [35] 于珊珊,徐尚德. 多连杆机构分析和虚拟样机技术的发展[J]. 机械设计与制造, 2004(5):118-121
    [36] Daizhong Su,Datong Qin. Integration of numerical analysis, virtual simulation and finite element analysis for the optimum design of worm gearing[J]. Materials Processing Technology,2003(1-3):429-435
    [37] 王成,王效岳. 虚拟样机技术及ADAMS[J]. 机械工程与自动化,2004(6):66-68,75
    [38] 宋晓华. 机械压力机运动学仿真分析和虚拟样机研究[D]. 杭州:浙江工业大学, 2005.5
    [39] 戴春祥. 用UG软件仿真渐开线齿轮的啮合过程[J]. 机电一体化,2001(2):33-36
    [40] 胡小康. UG NX2运动分析培训教程[M]. 北京:清华大学出版社,2005.1
    [41] 毕凤荣,崔新涛. 渐开线齿轮动态啮合力计算机仿真[J]. 天津大学学报,2005(11):991-995
    [42] Yi-Cheng,Chung-Biau Tsay. Stress analysis of a helical gear set with localized bearing contact[J]. Finite Elements in Analysis and Design,2002(3):707-723
    [43] 马磊. 高强度轻型材料齿轮传动动态接触仿真研究[J]. 中国电子科学研究院学报,2006(4):341-344
    [44] Shingo UEDA,Tatsuo XCUZUKI,Mitsuyoshi KAMIYA. Development of Gear Train Behavioral Analysis Technologies Considering Non-linear Elements[J]. Mechanism and Machine Theory,2006(3):305-311
    [45] 韩翔. 基于UG的2K-H行星减速器计算机辅助设计[D]. 成都:西南交通大学,2004.5
    [46] Vilmos Simon. FEM stress analysis in hypoid gears[J]. Mechanism and Machine Theory,2005(3):401-411
    [47] 陈建辉. 圆柱齿轮的三维参数化建模与应力分析[D]. 西安:西北工业大学,2005.1
    [48] 杨生华. 齿轮接触有限元分析[J]. 计算力学学报,2003(2):189-194
    [49] 马秋成,韩利芬. UG.CAE篇[M]. 北京:机械工业出版社,2002.6
    [50] 赵娥. 汽车变速器优化设计与有限元分析[D]. 哈尔滨:哈尔滨工业大学,2004.6
    [51] 耿鲁怡,徐六飞. UG结构分析培训教程[M]. 北京:清华大学出版社,2005.2
    [52] Cheng-Ho Hsu. Synthesis of kinematic structure of planetary gear trains by admissible graph method[J]. Journal of the Franklin Institute,1993(5): 913-927
    [53] Katsuhiro Mori,Yoshikatsu Shibata. Optimum Design of Hypoid Gear Dimension and Tooth Surface[J]. Mechanism and Machine Theory,2005(3):401-411
    [54] LyD.Nguyen,Taison Ku,Remo Neri. A Methodology to Analyze Aircraft Engine Gearbox and Mounting System Simultaneously Using Finite Element Analysis[J]. Mechanism and Machine Theory,2004(3):385-392
    [55] Gnanakotaiah G,Srinivasa Rao K. Design and Analysis of Two Wheeler Engine Gearbox through Siulation to Reduce the Development Time and Cost[J]. Finite Elements in Analysis and Design,2005(3):501-505
    [56] R.E.Clegg. Failure of planetary pinions in earth moving equipment-a failure analysis approach[J]. Engineering Failure Analysis,2000(1):35-41
    [57] Vijaya Kumar Ambarisha, Robert G.Parker. Nonlinear dynamics of planetary gears using analytical and finite element models[J]. Sound and Vibration,2007(3):577-595
    [58] S.K.Bhaumik,M.Sujata. Failure of an intermediate gearbox of a helicopter[J]. Engineering Failure Analysis,2007(1):85-100
    [59] Sandip Bhattacharyya,A.Banerjee. Failure analysis of an input shaft of skip drive gearbox[J]. Engineering Failure Analysis,2007(2):385-396
    [60] Osman Asi. Fatigue failure of a helical gear in a gearbox[J]. Engineering Failure Analysis,2006(7):1116-1125

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700