用户名: 密码: 验证码:
某钢厂1~#高炉节能降耗分析研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,随着我国钢铁产量的激增和生产规模的不断扩大,钢铁工业能源消耗占全国总能耗的比例已经从上世纪八十年代以来10%上升到目前的14%左右,节能降耗已成为我国钢铁企业迫待解决的难题。炼铁工序的能耗占钢铁工业总能耗的40%左右,是钢铁企业能源消耗的第一大户,搞好炼铁工序的节能降耗工作,对于降低我国钢铁工业能耗,保证钢铁工业节能降耗目标的实现,具有重要意义。
     本论文针对某钢厂1~#高炉投产至今能耗较高的现状,首次在对其入炉原、燃料及综合炉料的冶金性能和高炉能量利用状况进行系统、全面的测定、分析、评价的基础上,运用高炉生产静态模型(碳比图及里斯特操作线图)和回归分析模型,分析了该高炉节能降耗的潜力及部分操作参数与高炉能耗的关系,并结合该钢厂现状,制定了降低该高炉能耗的具体措施。主要研究内容概括如下:
     1.实验测定某钢厂1~#高炉入炉原、燃料及综合炉料的冶金性能,并与国内同类钢铁企业高炉用原、燃料的冶金性能进行对比分析,找出改进其原、燃料冶金性能和综合炉料结构优化的方向和途径,为提高该高炉精料水平,促进高炉节能降耗提供依据。
     2.对该高炉进行热平衡测试,分析目前高炉能量利用状况。根据计算分析结果,建立该高炉生产静态模型(碳比图及里斯特操作线图),分析节能降耗潜力及相关控制参数对其能耗的影响。并根据该高炉实际生产历史数据,建立线性回归模型,分析该高炉操作参数对其能耗的影响。
     3.根据以上的分析结果,制定出降低该厂1~#高炉能耗的有效措施。
In recent years, along with China's iron and steel output increasing sharply and the production scale unceasing expansion, the proportion that the iron and steel industry energy consumption occupied the national total energy consumption already rised from 80's 10% to present about 14%, therefore, reducing energy consumption has become a difficult problem which iron and steel enterprise compels to resolve in our country.The energy consumption of iron-smelting occupies the iron and steel industry total energy consumption about 40%, which is the first big household among the iron and steel enterprise energy consumption. Doing well the energy conservation of iron-smelting is significant not only for reducing China's iron and steel industry energy consumption, but also for guaranteeing the goal that the iron and steel industry reducing energy consumption to realize.
    In view of the present situation that No.1 BF of some iron and steel corporation which energy consumption is too higher, based on more detailed measurement, analysis and evaluation of the metallurgical performance of the raw charge, fuel, the synthesis furnace burden and the situation of the BF energy utilization for the first time. Using the blast furnace production static model (carbon ratio chart and Rister operates graph) and the regression analysis model, the potential of reducing energy consumption and the relationship between some operation parameters and energy consumption of this BF were analyzed. What's more, formulating concrete measures which reducing energy consumption combining the present situation of the iron and steel corporation. The main parts of this paper as follows:
    Determinating the metallurgical properties of raw material and complex BF burden of No.1 BF in this iron and steel corporation through experiments, and comparing with other domestic same type BF. Finding the way and direction that improving the metallurgical properties of the raw material and the structure optimization of complex BF burden.It can provide basis for improving beneficiated materials level of this BF and promoting the BF reducing energy consumption.
    Carrying on the thermal equilibrium test and analyzing the condition of energy utilization of the blast furnace at present. According to the previous computational and analysis results, establishing this blast furnace production static model (carbon ratio chart and Rister operates graph), analyzing saving energy conservation potential and the influence that the correlation controlled variable to its energy consumption.As well as based on this BF actual production history data, formulating linear regression model, analyzing the influence of this BF operate parameters to its energy consumption.
    Accoding to above analysises, making out effective measures to reduce the energy consumption of the No.1 BF of the iron and steel corporation.
引文
[1] 张有礼,王维兴.钢铁工业能源结构与节能[J].中国冶金,2006,(10):1-3.
    [2] 中国钢铁协会冶金环保部.中国钢铁工业能耗现状和节能前景[J].冶金管理,2004,(10):15-16.
    [3] 王维兴.钢铁钢铁企业工序能耗和节能潜力[J].冶金管理,2005,(6):32-33.
    [4] 中国钢铁工业协会.对我国钢铁工业发展循环经济的思考[J].标准网,2006
    [5] 李震.我国钢铁工业节能降耗技术的现状及发展趋势[J].鞍钢技术,2005,(5):1-5.
    [6] 王维兴.中国高炉炼铁技术进展[J].钢铁,2005,(10):8-9.
    [7] 张寿荣.炼铁系统节能[J].钢铁,2005,(5):1-4.
    [8] Ian Christmas,IISI秘书长.钢铁工业面临的挑战[C].2005年钢铁年会论文集,2005,1-6.
    [9] 张寿荣.进入21世纪我国钢铁工业面临的机遇与挑战[J].中国科协2005年学会大会报告汇编[R],2003,201-203.
    [10] Zhang shou-rong. Iron and Steel of Institute of Japan [C].Science and Technology of Innovative Iron Making for Aiming at Energy Half Consumption Ministry of Education, Culture, Sports, Science and Technology, 2005, 251-257.
    [11] 张寿荣,银汉.21世纪头20年中国钢铁工业面临的挑战[J].炼铁,2007,26(1):1-2.
    [12] 沙永志,曹军,王凤岐.我国炼铁节能环保[J].钢铁,2000,35(10):1-2.
    [13] Wang Wei-xing. Technical Progress in Chinese Iron Making [J].Iron and Steel, 2003, 38(5):61-66.
    [14] Yin Han. Character of Thin—walled Blast Furnace [J].Iron Making, 2001, (2):7-10.
    [15] 陈君明,胡传斌.宝钢炼铁节能降耗的生产实践与展望[J].中国冶金,2003,(3):75-76.
    [16] 张福明.我国大型高炉长寿技术发展现状[J].钢铁,2004,(10):75-76.
    [17] 李斌宜.龙钢炼铁厂某高炉生产技术进步[C].2005年钢铁年会论文集,2005,75-76.
    [18] 王维兴.炼铁节能的主要措施[J].冶金管理,2005,(12):13-15.
    [19] 高斌.炼铁节能要点[C].2005年钢铁年会论文集,2005,433-437.
    [20] 杨天钧.大力节能降耗,发展循环经济,促进炼铁工业可进发展再上新台阶[C].2005年钢铁年会论文集,2005,1-9.
    [21] 赵斌.先进钢铁工业节能技术及其应用前景[J].冶金能源,2004,(3):7-9.
    [22] 王炜.国内外高炉喷煤现状及主要技术措施[J].武汉科技大学学报,2000,(1):11-14.
    [23] 王炜.炼铁工序提高煤比降焦节能探讨[J].冶金管理,2006,(2):15-17.
    [24] 汪勇.高炉喷煤与节能[J].武钢技术,2000,(5):50-53.
    [25] Chu M. Study on Super High Efficiency Operation of Blast Furnace Based on Multi-fluid Model[D]. Sendai, Japen: TOHOKU University, 2004.
    [26] Masui Y, Sawayama M, Kasai A. Reduction Behavior of Carbon Composite Iron Ore Hot Briquette In Shaft Furnace and Scope on Blast Furnace Performance Reinforcement[J]. ISIJ International, 2003, 43: 1904-1912.
    [27] 汪琦.铁矿石含碳球团技术[M].北京:冶金工业出版社,2005.
    [28] Yagi J. Summary of the Project Research on a Super High Efficiency Ironmaking Process[A]. Science and Technology of Innovative Ironmaking for Aiming at Energy Half Consumption[C].Tokyo, japen: MEXT, 2003, 251-256.
    [29] 曹枫,龙世刚.高炉喷吹塑料技术及应用前景[J].冶金能源,2001,(9):26-29.
    [30] Tseitlin M A, lazutkin, S E. Styopin G M. A Flow-chart for Iron Making on the Basis of 100% Usage of Process Oxygen and Hot Reducing Gases Injection[J]. ISIJ International, 1994, (34): 570-573.
    [31] Mural R, Sato M. Ariyama T. combustion behavior of solid fuel in innovative blast furnace with exact high efficiency and its process outline[A]. Science and Technology of Innovative Ironmaking for Aiming at Energy Half Consumption[C]. Tokyo, japen: MEXT, 2003, 251-257.
    [32] 张跃.南汽轮集团以高科技产品助摧循环经济发展[J].中国经贸导刊,2006,(2):55-58,.
    [33] 庄允朋,厉建栋.燃气-蒸汽联合发电技术的应用[J].煤气与热力,2003,(9):559-561.
    [34] 由文泉,赵民革.实用高炉炼铁技术[M].北京:冶金工业出版社,2002.
    [35] 王海涛.几种高炉炉料冶金性能的对比研究[J].钢铁,2006,(1):22-27.
    [36] 邬虎林.包钢综合炉料冶金性能优化[J].钢铁,2006,(6):5-8.
    [37] 王连昌.莱钢高炉炉料冶金性能研究及综合炉料结构实践[J].山东冶金(增刊),2002,76-78.
    [38] 中华人民共和国准(铁矿石还原性测定标准方法)[J].1991,(3):3.
    [39] 傅菊英,朱德庆.铁矿氧化球团基本原理工艺及设备[M].长沙中南大学出版社,2005.
    [40] 王留.钢铁冶金学(炼铁部分)[M].北京:冶金工业出版社,2000.
    [41] 谭金锟.烧结矿低温还原及抑制措施[J].河北理工学院学报,1996,18(3):44-45.
    [42] 傅菊英,姜涛,朱德庆.烧结球团学[M].长沙:中南大学出版社,1996.
    [43] 许满兴.邯钢高炉原料质量及分析[J].烧结球团,1999,(1):5-8.
    [44] 李瑞峰.邯钢烧结矿冶金性能对比[J].河北理工学院学报,2005,(4):8-10.
    [45] 张玉柱.改善烧结矿冶金性能的研究及实践[J].烧结球团,2004,(4):4-7.
    [46] 任佩珊.矿物组成及显微结构对烧结矿质量的影响[J].宝钢技术,1997,(2):39-41.
    [47] 张瑞堂.烧结矿低硅含量的合理性辨析[J].烧结球团,2004,(3):5-8.
    [48] 谭贤会.低SiO_2烧结矿的生产实践[J].烧结球团,2001,(7):24-27.
    [49] 徐斌.烧结矿矿物组成、结构和冶金性能的关系[J].烧结球团,1998,23(3):7.
    [50] 叶匡吾.关于我国球团矿质量探讨[J].烧结球团,2005,(5):1-2.
    [51] 张殿有.高炉冶炼操作技术[M].北京:冶金工业出版社,2006.
    [52] 陈春元.包钢焦炭高温冶金性能研究[J].炼铁,2003,(1):16-19.
    [53] 周师庸.高炉焦炭质量指标探析[J].炼铁,2003,(6):22-25.
    [54] 林李全.焦炭热态性能对2500m3高炉炼铁指标影响的探讨[C].2003年钢铁年会论文集,2003,705-708.
    [55] 张玉柱.高炉炼铁[M].北京:冶金工业出版社,1995.
    [56] 邢建通.冶金焦热性能测定评述及影响因素分析[J].钢铁研究,2005,(4),5-7.
    [57] 孟超慧.焦炭质量对高炉生产的影响[J].鞍钢技术,2004,(5):9-12.
    [58] 胡俊鸽.国内外关于焦炭质量研究的最新进展[J].鞍钢技术,2004,13-17.
    [59] 冶金工业部.高炉热平衡及计算方法暂行规定[M].1984.
    [60] 那树人.炼铁计算[M].北京:冶金工业出版社,2005.
    [61] 张玉柱.炼铁节能与工艺计算[M].北京:冶金工业出版社,2002.
    [62] 成兰伯.高炉炼铁工艺及计算[M].北京:冶金工业出版社,1991.
    [63] 秦民生.炼铁过程的解析与模拟[M].北京:冶金工业出版社,1991.
    [64] 邓勃.分析测试数据统计处理方法.北京:清华大学出版社,1995.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700