用户名: 密码: 验证码:
丝导体无接触电爆法制备金属超细粉的设备及试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
电爆法是在一定的气体介质环境下,预先储存的电能对金属导体(导体丝或箔)脉冲放电,脉冲大电流使得金属导体熔化、气化、膨胀,发生爆炸。电爆法可以用来制备金属、合金、金属氧化物及氮化物等超细粉,具有能量利用率高,工艺参数可调,可有效控制制备粉末的粒度,不污染环境,所制粉末粒度分布窄、纯度高、化学活性高、不易团聚等特点。
     一般的丝导体电爆装置一般都是将丝导体通过夹具固定在两个电极之间,或者丝一端固定、一端触碰电极进行电爆,电爆的丝导体长度通常不能调节,其直径也受到一定限制。这些电爆方式中的丝导体都与电极接触,这样很容易出现一些问题,如电爆过程能量释放不充分,可能损伤电极以及所制备粉末中出现较多大颗粒等。
     因此,本文提出了一种丝导体电爆制备超细粉的新方法,丝可以在高压电场中无需与电极直接接触而电爆。这样就很好地解决了夹持式电爆容易出现的问题。
     本文在课题先期研究的基础上研制了一种丝导体无接触电爆实验设备。该设备主要由丝导体整列送进装置、电爆炸装置、粉末收集系统和高电压电路及控制系统四部分组成。该设备结构合理,操作简便,最主要的特点就是丝导体在电爆中是自由的,不需要用夹具固定在两个电爆电极之间。这样一方面使得所能电爆的丝导体不再受到长度和直径的限制。另外还可省去夹具操作机构、高压间隙开关以及开关行程控制系统,从而大大降低了设备的复杂度,提高了运行稳定性;能连续电爆炸丝导体,目前实验电爆炸频率为10次/分钟。电爆的过程参数可调,对不同规格的丝导体其适应性较强。
     在不同过程参数下进行电爆铜丝实验,研究了丝导体无接触电爆的特点以及用于制备金属超细粉的可行性。
     影响整个丝导体电爆过程的因素概括起来有:
     1)电爆最初阶段出现的电弧放电和此时形成等离子决定着丝导体电爆炸的起始状态,直接影响丝导体从固态加热、熔化,变成液态金属达到汽化状态前的整个加热过程。可以通过调节一些过程参数来改变这个加热过程。
     2)能量密度,即金属单位体积内所沉积的能量。电流密度直接影响着能量密度。电流密度越大,加热速度就越大,金属就可以在更短的时间内沉积更多的能量,电爆炸起始点就倾向在高能区出现,当能量密度高于金属的比电流作用时表现为快爆炸。
     在无接触电爆丝导体制备金属超细粉时,通过调节过程参数以获得不同粒径的超细粉。对电爆过程参数进行优化匹配,可使爆炸时沉积到金属的能量达到最大,从而使得紧接着发生的爆炸达到极大特征,因而可得到粒度均匀细小的高质量超细粉。在高能量快速作用下,大部分金属直接气化形成极微细粒子,爆炸冲击波驱使粒子在介质中高速运动形成了细小而均匀的颗粒。而在较低能量作用下丝导体首先发生熔化,只有小部分被蒸发,剩余金属经过爆炸冲击波作用形成熔滴和碎片,得到的粉末部分颗粒粗大或成片状,形貌不规则。
     接下来进行电爆炸铜丝制备粉末,获得了铜和铜的氧化物超细粉,研究了电爆过程参数对粉末的粒度和形态的影响。利用扫描电镜和透射电镜观察粉末形貌,利用激光粒度测试仪和电镜测量法分析粉末的粒度分布。电镜观察到粉末颗粒的微观形态多数为球形,有一部分呈不规则多面体状。激光粒度测试的粉末二次颗粒成正态部分布;电镜分析了部分粉末颗粒,中位径都在60nm以下,粒径主要分布在0.02μm~0.3μm。
When a pre-stored electrical energy loaded upon a thin conductor (including wires and foils)fleetly in some ambience, a pulsed current generated through the conductor and the energy will be transferred to heat energy in high speed, supervene the fast electrothermal effect. The conductor will be melted, evaporated and ionized, resulting in a plasma that expands into the medium. This process is commonly called Conductor Electrical Explosion, and it can be used to produce ultra-fine powders of pure metal, alloy, metal nitrides and metal oxides. This application is provided with many advantages, such as high efficiency of energy, governable process variables, applicability of different metals, environmental friendliness, and so on. And this technics have more significant points in preparing powders, the characteristics of powders as follows: high purity, reactive and well-dispersed with narrow distribution.
    The device of wire electrical explosion(WEE)is generally designed as: the wire conductor is fixed by the clamps collocated in each electrode, or one end of the conductor is nipped, and another is non-restraint. The wire length always restricted by the interspace between two electrodes, and the wire diameter cannot be too large or too small, additionally, there are several defective aspects of device such as energy unable released completely, the two electrodes would be possibly broken in the forceful blast, and some tinpot presents in the powders prepared by this method.
    A novel method of preparing ultra-fine powder by wire explosion was proposed in respect of above devices, the metal wires could be exploded electrically in the high voltage electric field without contacting with electrodes. The limitations citied above are smoothly resolved.
    The un-contacted equipment of WEE is advisedly developed in this paper, which can be called "UCE-WEE". This equipment consists up "arranging-feeding" parts of wire, the vessel of wire electrical exploding, the powders collecting system, high voltage circuit and its controlling system. The makeup becomes more simple, and the operation is relatively flexible. The primary feature is that wire is completely non-restraint, wire no longer be fixed by clamps, and therefore this device can adjust wires with different length and diameter. In addition, the clamps, the gap switch and its operating system are removed, so the configuration of the equipment become more compact, and the managing reliability is well improved. We can explode wire continually using this new method, with presently frequency reaches 10 times/min.
    We exploded sets of Cu wires with different diameters and different lengths, in order to research the electrical explosion of un-contacted wires, and attest the possibility of application in preparing ultra-fine powders.
    The crucial factors which markedly influence the whole explosion are concluded generally as follows:
    1) Arc discharge and preliminary formation of plasma in the initial heating stage. Discharge and plasma in the initial heating stage determine the starting state of electrical explosion, because the transformation above observably exert an influence on the whole heating action which from wire solid state, melting, melted to liquate state till gasification. Many research reveals the transformation is controllable, so we can shift this energy-cumulating process by changing some parameters.
    2) Energy density. Energy density is named as the energy deposited the volume unit of metal. The explosion of materials inclines to start in the high-density sections if energy density is increased obviously, in addition, the explosion behave as fast
    explosion when energy density excesses over the integral action of specific current.
    We discover that powders show some susceptivity to the process parameters when applying this new method to preparing powders. The energy deposited in wire during explosion of wire in some conditions is controllable to reach a high-point, and the explosion up to the utmost. If the energy is high enough, the process seemed as fast explosion, most of the material vaporizes into the medium and forms superfine droplets, the droplets impelled by the blast and turns into small particles. But if the energy is quite low, there is a small part of material vaporizes into the medium, the rest forms some large droplets and fragments, the last products contains a lot of large particles which always have irregular shapes.
    People can explode the wires under well-matched process parameters to obtain conceivable powders
    And next, exploding copper wire experiments with "UCE-WEE" were carried out with a variety of process parameters to prepare the ultra-fine powder which includes Cu and oxides. Particle size distributions measured by laser particle sizer, the results indicate that large number of quadratic particles present in powders. In SEM and TEM images of the powders, particles display as round and polygon shaped, with size reach nanosize. We measured a finite number of particles in these images, and analyzed the data with the "log-normal" function , the results show that the median diameters of some powders are lower than 60nm, and granularity have the range from 0.02 μm~0.3μm.
引文
[1] 徐羽展.超细粉体的制备方法[J].浙江教育学院学报,2005,15:53-59.
    [2] 刘现平.用化学还原法制备超细铜粉的研究[D].北京:北京科技大学,1994.5.
    [3] 顾新梅.纳米技术简介[J].技术物理教学,2005,2(13):47-49.
    [4] 冯异,赵军武,齐晓霞,高芬.纳米材料及其应用研究进展[J].工具技术,2006,10(40):10-15.
    [5] 谭镜明,谈智勇,吴勘.纳米技术产业化进展[J].广州化工,006,3(43):17-19.
    [6] 王献忠.纳米陶瓷研究现状及技术发展[J].萍乡高等专科学校学报,2005,4:59-63
    [7] Yee Y, Nam H, Lee S, et al. PZT Actuate micromirror for fine tracking mechanism of high density optical data storage[J]. Sensors and Actuators A, 200, 89: 166~173.
    [8] Wang S, Li J, Wakabayashi K, et al. Lost silicon mold process for PZT microstructure[J]. Adv. Mater, 1999, 11(10): 873~876
    [9] 朱孝信.超微细粉末材料的发展[J].材料开发与应用,1998,13(5):30-33.
    [10] 张克,李良果,王洪友.超细粉体的性质、制备及其对工程学科的影响[J].粉体技术,1998,4(2):35-38.
    [11] Frederick Tepper. Metallic nanopowders produced by the electro-exploding wire process[J]. The International Journal of Powder Metallurgy, 1999, 35(7): 38-45.
    [12] 周瑞发,韩雅芳,陈祥宝.纳米材料技术[M].北京:国防工业出版社,2003,5(2):212-216.
    [13] 朱亮,张周伍.高电压技术由于超细粉制备和材料喷涂的研究进展[J].材料导报,2005,19(12):76-79.
    [14] 牛明勤,吴介达.超细镍粉的制备进展[J].精细化工,12(20):715-717.
    [15] 王浩,赵文宽,方佑龄,等.二氧化钛催化杀灭肿瘤细胞的研究[J].催化学报,1999,20(30):373-374.
    [16] 尚书勇,梅丽,李兰英,印永祥,戴晓雁.等离子体法制备超细粉体氮化铝的研究[J].化工新型材料,17(32):32-35.
    [17] 于兵川,无洪特,张万忠.光催化纳米材料在环境保护中的应用[J].石油化工,2005,24(5):491~495.
    [18] Tang W. Z, An H. UV/TiO_2 photocatalytic oxidation of commercial dyes in aqueous solutions. Chemosphere, 1995, 31(9): 4157-4170.
    [19] 李毕忠.抗菌塑料的发展和应用[J].化工新型材料,2000,28(6):8~12.
    [20] Zehnder T, Matthey, Schwaller P, et al. Wear protective coatings consisting of TiC_2SiC_2H deposited by magnetronsputtering. Surf. Coat. Tech., 2003, 163: 238~244.
    [21] 林文松,李培耀,钱士强,郭铁波,周细应.纳米涂层的研究现状与展望[J].材料保护,2003,7(36)
    [22] A. M. Iskoldsky, N. B. Volkov, O. V. Zubareva. The dynamics of large-scale spatial structures in current-carrying fluids and the explosion of conductors[J]. Physica D, 1996, 91: 182-204.
    [23] Weihua Jiang, Kiyoshi Yatsui. Pulsed wire discharge for nanosize powder synthesis[J]. Plasma Science, 1998, 26(5): 1498-1501.
    [24] Qun Wang, Haibin Yang, Jianlin Shi, et al. Preparation and characterization of nanocrystalline powders of Cu-Zn alloy by wire electrical explosion method[J]. Materials Science and Engineering, 2001, A307: 190-194.
    [25] V. Lvanov, Y. A. Kotov, O. H. Samatov. Synthesis and dynamic compaction of ceramic nanopowders by techniques based on electric pulsed power[J]. NanoStructured Materials, 1995, 6: 287-290.
    [26] Yoshiaki Kinemuchi, Hiroshi Muff, Tsuneo Suzuki, et al. Increase in phase transition temperature of activated aluminum with nano-zirconia synthesized by pulsed wire discharge[J]. Journal of the American Ceramic Society, 2003, 86(9): 1522-1526.
    [27] C. H. Cho, S. H. Park, et al. Production of nanopowders by wire explosion in liquid media[J]. Surface & Coatings Technology, 2006, 12487(3).
    [28] V. S. Sedoi, Gennady A. Mesyats, Vladimir I. Oreshkin, et al. The current density and the specific energy input in fast electrical explosion[J]. Plasma Science, 1999, 27(4): 845-850.
    [29] Yongqing Fu, Christopher Shearwood. Characterization of nanocrystalline TiNi powder[J]. Scripta Materialia 50(2004): 319-323.
    [30] Shushan Dong, Ping Hou, Haibin Yang, et al. Synthesis of intermetallic NiAl by SHS reaction using coarse-grained nickel and ultrafine-grained aluminum produced by wire electrical explosion[J]. Intermetallics, 2002, 10: 217-223.
    [31] 刘宏英.超细金属粉制备新工艺研究[J].湖南冶金,2003,31(5):19-21.
    [32] 李晴宇,张小明,杨升红.纳米微粉的制备[J].新材料.新工艺,2001,11:14-15.
    [33] M. Uakoshi, T. Yoshitom, A. Kato. Preparation of aluminum and aluminum-silicon powders by wire explosion resulting from electric discharge[J]. Journal of materials science, 1995, 30: 1240-1244.
    [34] 朱亮,张周伍,魏风波,罗仁昆.电爆制备超细粉的方法以及过程参数对制备的影响[J].兰州理工大学学报,2006,5(32):17-20.
    [35] Y. Me-Bar, R. Harel. Electrical explosion of segmented wires[J]. American Instituteof Physics, 1996.
    [36] Michael J Ttayor. Formation of plasma around wire fragments created by electrically exploded copper wire[J]. J. Phys. D: Appl. Phys, 2002, 35: 700-709.
    [37] A. M. Iskoldsky, N. B. Volkov, O. V. Zubareva. The dynamics of large-scale spatial structures in current-carrying fluids and the explosion of conductors[J]. Physica D, 1996, 91: 182-204.
    [38] 冯开明,高椿明,何开辉.丝阵Z箍缩等离子体内爆过程单丝特性研究[J].核聚变与等离子体物理,2003,1(23):67-70.
    [39] 杨津基.气体放电[M].北京:科学出版社,1983.
    [40] T. H. Matin. An Empirical Formula for Gas Switch Breakdown Delay[J]. Proc, 7th. IEEE Trnsactions on Plasma Science, 1998, 26(3): 874-881.
    [41] 孙广生,邵涛,严萍高,魏彭,燕昌,张适昌.高压纳秒脉冲下气体放电研究进展.第九届全国工程电介质学术会议论文集,44-47.
    [42] Jong-Chul Lee, Youn J. Kim. Numerical modeling of SF_6 thermal plasma generated during the switching process[J]. Thin Solid Films 2005(475): 72-80.
    [43] Shakov V, Ya, Ilyin. A. P., D. V. Tikhonov, et al. Structural features of ultrafine powders generated in conditions of wire electrical explosion[J]. Chemistry and Chemical Technologies, Korus, 2002: 277-279.
    [44] N. A. Yavorovsky, V. G. Domashenko, P. V. Balukhtin. Production of ultradispersed powders with electric explosion method[J]: 280-285.
    [45] Kotov Yu. A., Sedoy V. S., et al. Design and implementation of intensive bean sources[J]. Novosibirsk: Nauka, 1976, P.61.
    [46] 龚兴根,电爆炸断路开关.强激光与粒子束,2002,4(14):577-582.
    [47] TuckerT J, Toth R P EBWI. A computer code for the prediction of the behavior of electrical circuits containing exploding wire elements[R]. SAND-75-0041, 1975: 4-26.
    [48] Knoepfel HK. Pulsed high magnetic fields amserdm[M]. London: North-Holland Publishing Company, 1970, 87: 277-274.
    [49] PoulsenP, Cutting J L, Hawke RS. Inductive store opening switch and tests for energy transfer to aload[A]. In: Titov VM, shvetsov G A. Megagauss fields and pulsed power systems[C]. NewYork: NovaScience Publishers, 99: 579-586.
    [50] Y. A. Kotov, O. M. Samatov. Production of nanometer-sized AIN powders by the exploding wire method[J]. Nano Structured Materials, 1999,12:119-122.
    [51] Perez J D, Watson B A. Small hollow cylinders as Z-pinch plasmas[J]. Quant. Spetrosc. Radiat Transfer, 1990,44(5):541.
    [52] A. Luque, H. Schamel. Electrostatic trapping as a key to the dynamics of plasmas, fluids and other collective systems[J]. Physics Reports,2005,415:261-359.
    [53] Molokov S,Allen J E.The fragmentation of wires carrying electric current [J]. Phys. D: Appl. Phys, 1997,30.
    [54] Dyos G T.Farrell T.Electrical Resistivity Handbook[D] (London:Peter Peregrinus),1992.
    [55] G A. Mesyats.Ecton as an electron avalanche from a metal[J].Uspekhi Fiz. Nauk, 1995, 5(165):601-626.
    [56] Knoepfel H.K. Ecton mechanism of the vacuum arc cathode spot[J]. IEEE Trans..Plasma Sci., 1995, 23:879-883.
    [57] E.A. Litvinov, GA.Mesyats, and D.I.Proskurovsky. Field emission and explosive emission processes in vacuum discharges[J]. Uspekhi Fiz. Nauk, 1983, 2(139):265-302.
    [58] W.G Chace and M.A. Levine. Classiffication of wire explosions [J]. J.Appl. Phys, 1960, 7(31) :1298.
    
    [59] Valentin S.Sedoi,Gennady A.Mesyats,Vladimir I.Oreshkin,et al. The current density and the specific energy input in fast electrical explosion[J]. Plasma Science, 1999,27(4):845-850.
    
    [60] R.Sarathi,T.K.Sindhu, S.R.Chakravarthy. Impact of binary gas on nanoaluminium particle formation through wire explosion process[J]. Materials Letters,2007, 61:1823-1826.
    [61] N.A.Yavorovsky, V.G.Domashenko, P.V.Balukhtin. Production of ultradispersed powders with electric explosion method[J].p280-285.
    [62] Y.S.Kwon,V.V.An,A.P.Ilyin,etal.Properties of powders produced by electrical explosion of copper-nickl alloy wires[J] .Material Letter(2006).
    [63] Young-Soon Kwon,Young-Hun Jung, N.A.Yavorovsky,et al. Ultrafine powder by wire explosion method[J]. Sarov(Arzamas-16):VNIIEF,1996, 369—372.
    [64] V. I. Petrosyan and E. I. Dagman.On the theory of the electrical explosion in vacuum[J].Zh. Tekh. Fiz., 1969,11(34):2084-2091.
    [65] M.Uakoshi, T.Yoshitom, A.Kato. Preparation of aluminum and aluminum-silicon powders by wire explosion resulting from electric discharge[J] .Journal of materials science, 1995, 30:1240-1244.
    [66] 预电离对尖一板间隙冲击击穿的影响[J].高压电器,1994,6:9-12.
    [67] Qiu Y. Impulse breakdown characteris-tics of enclosed sphere gaps[J]. Proc. 4th ISH, 1983, paper 33.07.
    [68] Christophorou L G, Pinnaduwage L A. Basic physics of gaseous dielectrics[J]. IEEE Trans. Electrical Insulation. 1990, 25(1): 55-74.
    [69] Sodoy V. S., Abstract of Technnical Science candidate thesis, Tomsk, Tomsk PolytechninicalInst., 1975, p24.
    [70] Sarathi, T. K. Sindhu, S. R. Chakravarthy Impact of binary gas on nano-aluminium particle formation[J]. Materials Letters(Elsevier), 2007, 61: 1823-1826.
    [71] 张福根,程路.棒状和片状颗粒在激光粒度仪中的等效粒径[J].过滤与分离,2006,1(16):21-23.
    [72] 柴月娥,龚福忠,张国利.超分散剂应用进展[J].天津化工,2006,6(20):4-6.
    [73] 韩敏芳,杨翠柏.纳米粉体粒度特性表征方法讨论[J].中国非金属矿工业导刊,2003,4:30-34.
    [74] 王辉,曾美琴.X射线小角散射法测量纳米粉末的粒度分布[J].粉末冶金技术,2004,1(22):7-11.
    [75] 张建平,周浩然,许茂.透射电镜在不同分散条件下测定纳米铁粉的粒度和分布[J].化学与黏合,2005,4(27):251-252.
    [76] 张福根.我国粉体粒度测试技术现状[J].中国粉体技术,2000,Swpply(6):45-48.
    [77] 任俊,卢寿兹.固体颗粒的分散[M].粉体技术,1998,4(1):25-27.
    [78] 张立德.超微粉体制备与应用技术[M].北京:中国石油化工出版社,2000,2(4):16-19.
    [79] 高濂,孙静,刘阳桥.纳米粉体的分散及表面改性[M].北京:化学工业出版社,2003,40-45.
    [80] 刘宗德,丰树平,孙承纬,韩铭宝.冲击大电流高加热率试验装置研究[J].爆炸与冲击,1995,15(4):315-321.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700