用户名: 密码: 验证码:
OCT三维重建与多普勒成像研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
光学相干层析成像(Optical Coherence Tomography,OCT)技术是一种具有微米量级高分辨率的非侵入性生物医学成像手段,无需进行生理切片就能够获得活体样品内部的三维结构等信息。对OCT所得到的三维信息作可视化处理,可以有效地帮助研究人员更好的理解所拥有的数据。目前OCT三维重建的有着多种方法,可以通过不同的表现方式来展现样品内部信息,包括:多平面重组法、投影法、面绘制、体绘制等。
     OCT三维重建的数据来源于从数字信号重组得到的图像。OCT不仅可以获得样品结构图像,还可以通过多普勒图像重建来得到样品内部的血液流速等重要信息。为了获取高质量的图像数据,需要对信号进行预处理,并选择合适的图像重建算法。比如,多普勒图像重建的算法就需要根据不同实验环境的要求来选择使用短时傅里叶变换法或者希尔伯特变换法。
     本课题主要研究了三维重建的各种方法,利用已有的光纤型OCT系统,使用Visual C++编写三维扫描软件获取三维重建所需要的数据,并使用MATLAB实现结构图像的三维重建,同时研究了不同算法对多普勒图像重建的影响,并在小白鼠活体实验中予以验证。
     本文正文部分共分为五章。第一章简述了OCT的相关原理,阐述了三维重建的研究现状与意义,概述了课题中软件开发工具的选择。第二章介绍了OCT的三维信号的获取,以及模拟信号处理和数字信号处理的相关内容。第三章阐述了三维重建的各种方法,以及三维重建前对OCT图像预处理的方法,并对三维扫描实验中所得到的数据进行三维重建和动画渲染。第四章介绍了多普勒图像重建的两种算法,通过实验比较了两种算法的适用环境。第五章对课题作出总结,并提出了今后需要努力的方向。
Optical coherence tomography (OCT) is a noninvasive biomedical imaging method with micron scales resolution which could provide three-dimensional structural information of tissue in vivo without the need for excision or preparing sections. Visualization of the three-dimensional OCT information can effectively help researchers have a better understanding of the data. There are many methods of OCT three-dimensional reconstruction, providing different means of expression to show the internal information in samples, including: multi-planar reconstruction, projection, surface rendering, volume rendering, etc.
    The images reconstructed from OCT signals form the sources of the three-dimensional reconstruction. The images include no only the structural images of sample, but also the Doppler images with important information such as internal blood flow. In order to providing a high quality image data, it is necessary to do signal preconditioning and choose a suitable image reconstruction algorithm. For example, the Doppler reconstruction needs to choose the short time Fourier transformation or the Hilbert transformation, depending on the different requirement in the experiment.
    The various methods of three-dimensional reconstruction are introduced in this thesis. Software is designed using Visual C++, to provide three-dimensional scanning and get the data necessary for three-dimensional reconstruction. The three-dimensional structural reconstruction is demonstrated using MATLAB. And some algorithms of Doppler reconstruction are realized to evaluate the different effect in Doppler images. An experiment on mouse is demonstrated to test the algorithms.
    Five chapters are included in this thesis. In the first chapter, the principle of OCT and the current situation of three-dimensional reconstruction is introduced. It is presented the choosing of software development tools used in the project. In the second chapter, the three-dimensional signal acquisition in OCT is described. The
    signal processing in both analog and digital is introduced. In the third chapter, various methods of three-dimensional reconstruction as well as the preprocessing of OCT images are presented. The three-dimensional reconstruction and the related animation are demonstrated using the data from three-dimensional . scanning experiment. In the fourth chapter, two algorithms of Doppler reconstruction are introduced. An experiment is demonstrated to compare the difference in the two algorithms. Finally, a conclusion of our work and the direction of further improvements are presented in the fifth chapter.
引文
[1]. D. Huang, E. A. Swanson, C. P. Lin, et al. Optical coherence tomography, J, Science, 1991, 254(5035), 1178-1181.
    [2]. A. F. Fercher, W. Drexler, C. K. Hitzenberger, et. al, Optical coherence tomography-principles and applications, Reports on progress in physics, Institute of Physics Publishing, 2003, 239-303.
    [3]. Joseph M. Schmitt, Optical Coherence Tomography (OCT): A Review, IEEE Journal of Selected Topics in Quantum Electronics, 1999, 5(4), 1205-1215.
    [4]. S. Guo, Y. Xie, G Peavy, et al, Three dimensional structural and local birefringence imaging of the bovine meniscus by use of OCT and PSOCT, Coherence Domain Optical Methods and Optical Coherence Tomography in Biomedicine X, Proc. of SPIE, 2006, Vol. 6079 60792D.
    [5]. M. Chorea, T. Yelbuz, L. Thrane, Three-Dimensional OCT Imaging of the Embryonic Chick Heart, Coherence Domain Optical Methods and Optical Coherence Tomography in Biomedicine Ⅶ, Proc. of SPIE 2003, Vol. 4956, 259-262.
    [6].高蕾娜,何建英,医学断层图像三维重构的研究及应用,机械与电子,2005,3,77-79.
    [7]. Y. Zhao, K. M. Brecke, H. Ren, et al, Three-dimensional reconstruction of in vivo blood vessels in human skin using phase-resolved optical Doppler tomography, IEEE Journal of Selected Topics in Quantum Electronics 2001(6), 931-935.
    [8]. W. Jung, J. Zhang, L. Wang, et al, Three-Dimensional Optical Coherence Tomography Employing a 2-Axis Microelectromechanical Scanning Mirror, IEEE Journal of Selected Topics in Quantum Electronics 2005(11), 806-810.
    [9]. Y. Yasuno, V. Madjarova, S. Makita, et al, Three-dimensional and high-speed swept-source optical coherence tomography for in vivo investigation of human anterior eye segments, Optics Express, 2005, Vol. 13, Num 26, 10652-10664.
    [10]. N. Hanna, D. Saltzman, D. Mukai, et al, Two-dimensional and 3-dimensional optical coherence tomographic imaging of the airway, lung, and pleura, The Journal of Thoracic and Cardivascular Surgery, 2005, 129, 615-623.
    [11]. W. Jung, J. Zhang, L. Wang, et al, Three-dimensional endoscopic optical coherence tomography by use of a two-axis microelectromechanical scanning mirror, Applied Physics Letters 2006, 88, 163910.
    [12]. C. Xi, D. Marks, S. Schlachter, et al, High-resolution three-dimensional imaging of biofilm development using optical coherence tomography, Journal of Biomedical Optics, 2006, Vol. 11(3), 034001.
    [13]. A. Podoleanu, J. Rogers, D. Jackson, et al, Three dimensional OCT images from retina and skin, Optics Express, 2000, Vol. 7, Num 9, 292-298.
    [14]. M. Laubscher, M. Ducros, B. Karamata, et al, Video-rate three-dimensional optical coherence tomography, Optics Express, 2002, Vol. 10, Num 9, 429-435.
    [15]. C. Hitzenberger, R Trost, P. Lo, et al, Three-dimensional imaging of the human retina by high-speed optical coherence tomography, Optics Express, 2003, Vol. 11, Num 21, 2753-2761.
    [16]. Z. H. Ding, Y. H. Zhao, H. W. Ren, et al, Real-Time Phase-Resolved Optical coherence tomography and optical doppler tomography, Optics Express, 2002, Vol. 10, Num. 5, 236-245.
    [17]. X. F. Yu, Z. H. Ding, Y. H. Chen, et al, Instrumentation of fiber-based functional optical coherence tomographic imaging system, Optics in Health Care and Biomedical Optics: Diagnostics and Treatment Ⅱ, Proc. of SPIE, 2005, Vol. 5630, 273-277.
    [18]. H. W. Ren, Z. H. Ding, Y. H. Zhao, et al, Phase-Resolved functional optical coherence tomography: Simultaneous imaging of in situ tissue structure, blood Flow Velocity, standard Deviation, birefringence, and Stokes vectors in human skin, Optics Letters., 2002, Vol. 27, Num. 19, 1702-1704.
    [19]. Andrew M. Rollins, Manish D. Kulkami, Siavash Yazdanfar, et al. In vivo video rate optical coherence tomography, Optics Letters., 1998, 3 (6), 219-229.
    [20]. Y. Zhao, Z. Chen, C. Saxer, et al. Phase-resolved optical coherence tomography and optical Doppler tomography for imaging blood flow in human skin with fast scanning speed and high velocity sensitivity, Optics Letters. 2000, 25, 114-116.
    [21].张季,王宜杰,医学图像三维重建方法的比较研究,医学信息,2006,19(5),948-950.
    [22].郑君立,达飞鹏,谭小洪等,OpenGL在逆向工程三维重构中的应用研究,计算机应用研究,2003,1,99-101.
    [23].赵明昌,田捷,薛健等,医学影像处理与分析开发包MITK的设计与实现,软件学报,2005,16,485-495.
    [24].郭圣文,集成化医学图像可视化系统的实现,中国医学物理学杂志2006,Vol 23,Num 5,333-336.
    [25]. X. Gu, Q. Zhang, L. Larcom, et al, Three-dimensional bioluminescence tomography with model-based reconstruction, Optics Express, 2004, 12, 3996-4000.
    [26].张志涌,精通MATLAB 6.5版,北京航空航天大学出版社,2003,438-465.
    [27].刘慧婷,程家兴,张曼,利用Hilbert变换提取信号瞬时特征的算法实现,微机发展,2003(13),6,82-85.
    [28].罗利春,用希尔伯特变换构造解析信号进行时频分析,航天电子对抗,2003,3,26-29.
    [29].李风民,希尔伯特变换及其应用研究,中国无线电,2006,7,53-54.
    [30].王庆河,王庆山,数据处理中的几种常用数字滤波算法,计量技术,2003,4,53-54.
    [31].赵荣椿,赵忠明,数字图象处理导论,西北工业大学出版社,1995,74-103.
    [32].王家文,曹宇,MATLAB 6.5图形图像处理,国防工业出版社,2004,245-309.
    [33].冈萨雷斯(Gonzalez,R.C.),数字图像处理,电子工业出版社,2003,59-170.
    [34].崔风玉,孙晓卫,丁元萍等,半规管多平面重组技术及临床应用价值,山东大学学报:医学版,2006,44(9),922-925.
    [35].李琳,罗德红,周纯武等,螺旋CT多平面重组技术在喉癌诊断中的价值,中华放射学杂志,2006,4010),1051-1055.
    [36].李光耀,谢杨,基于医学图像标准的最大深度投影算法,计算机辅助工程,2004,13(4),1-4.
    [37].孙薇薇,张桦,三种体绘制算法的比较,大津理丁大学学报,2005,21(4),9-11.
    [38].洪歧,张树生,王静,体绘制技术,计算机应用研究,2004,21(10),16-18.
    [39].张尤赛,陈福民,三维医学图像的体绘制技术综述,计算机工程与应用,2002,38(8),18-19
    [40].时丕丽,范辉,三维医学可视化系统设计,计算机工程,2004,30(24),171-173.
    [41].胡英,徐心和,基于光线相关性的快速光线投射算法,中国图象图形学报:A辑,2004,9(2),234-240.
    [42].鲍华,汪天富,林江莉等,采用半透明效果实现医学三维整体可视化,航天医学与医学工程,2006,19(2),120-124.
    [43].张尤赛,陈福民,基于纹理映射与Phong光照模型的体绘制加速算法,中国图象图形学报:A辑,2003,8(9),1048-1054.
    [44].叶伯生,张艳君,曾理湛,三维表面重建中明暗处理算法研究与应用,机床与液压,2005,5,154-155.
    [45].林晓梅,裴建国,牛刚等,医学图像三维重建方法的研究与实现,长春工业大学学报:自然科学版,2005,26(3),225-228.
    [46].黄魁东,张定华,王凯等,基于锥束CT的两类三维表面重构方法比较研究,汁算机应用研究,2006,23(3),162-164.
    [47].李燕,周明全等,医学体数据三维可视化改进算法综述,计算机应用与软件,2003,20(2),75-77.
    [48].何晖光,田捷等,基于分割的三维医学图像表面重建算法,软件学报,2002,13(2),219-226.
    [49].张宗华,彭翔,刘常青等,基于CT的头颅骨三维表面重建,中国生物医学工程学报,2004,23(5),392-397.
    [50].孙国辉,包宏,靳风荣,三维物体表面重建方法的分析,计算机应用研究,2004,21(4),253-255.
    [51]. W. E. Lorensen., H. E. Cline, Marching cubes: a high resolution 3D surface construction algorithm, Computer Graphics, 1987, 21 (4), 163-169.
    [52]. M. Bartsch, T. Weiland, M. Witting, Generation of 3D lsosurfaces by Means of the Marching Cube Algorithm, IEEE TRANSACTIONS ON MAGNETICS, 1996, Vol. 32, No. 3, 1469-1472.
    [53].徐晓玲,李现民等,体素重建中的快速移动立方体方法,系统仿真学报,2002,14(4),509-513.
    [54].顾耀林,吕理伟,移动立方体算法中的三角剖分,计算机工程与设计,2006,27(1),120-123
    [55].王正山,吕理伟,顾耀林等,基于改进MC算法的三维表面重建,微电子学与计算机,2005,22(9),3-6.
    [56].僧德文,李仲学,李翠平等,Marching Cubes算法改进研究及应用,计算机应用研究,2006,23(7),50-51,61.
    [57].吕理伟,顾耀林,移动立方体算法的三重线性插值研究,计算机工程与应刚,2005,41(32),41-44.
    [58].李建初等,血管和浅表器官彩色多普勒超声诊断学,北京医科大学、中国协和医科大学联合出版社,1999,4-37.
    [59].F.杜斯特等,激光多普勒测速技术的原理和实践,科学出版社,1992,97-134.
    [60].范志刚等,光电测试技术,电子工业出版社,2004,127-136.
    [61]. Z. Chen, Y. Zhao, S. M. Srivivas, et al, Optical Doppler Tomography, IEEE Journal of Select. Topics in Quantum Electronics, 1999, Vol. 27, Num. 19, 1134-1142.
    [62]. D. Piao, Q. Zhu, Quantifying Doppler angle and mapping flow velocity by a combination of Doppler-shift and Doppler-bandwidth measurements in optical Doppler tomography, Applied Optics, 2003, Vol. 42, Issue 25, 5158-5166.
    [63]. M. C. Pierce, B. H. Park, B. Cense, et al, Simultaneous intensity, birefringence, and flow measurements with high-speed fiber-based optical coherence tomography, Optics Letters, 2002, Vol. 27, Issue 17, 1534-1536.
    [64]. D. Piao, L. L. Otis, Q. Zhu, Doppler angle and flow velocity mapping by combined Doppler shift and Doppler bandwidth measurements in optical Dopplertomography, Optics Letters, 2003, Vol. 28, Issue 13, pp. 1120-1122.
    [65]. Y. Ahn, W. Jung, J. Zhang, et al, Investigation of laminar dispersion with optical coherence tomography and optical Doppler tomography, Optics Express, 2005, Vol. 13, Issue 20, 8164-8171.
    [66]. Z. Chen, Y. E. Milner, D. Dave, et al, Optical Doppler tomographic imaging of fluid flow velocityin highly scattering media, Optics Letters, 1997, 22(1): 64-66.
    [67]. J. A. Izatt, M. D. Kulkarni, S. Yazdanfar, et al, In vivo bidirectional color Doppler flow imaging of picoliter blood volumes using optical coherence tomography, Optics Letters, 1997, 22(18), 1439-1441.
    [68]. Y. Zhao, Z. Chen, J. S. Nelson, et al, Doppler standard deviation imaging for clinical monitoring of in vivo human skin blood flow, Optics Letters, 2000, 25(18): 1358-1360.
    [69]. Y. Zhao, K. M. Brecke, H. Ren, et al, Three-dimensional reconstruction of in vivo blood vessels in human skin using phase-resolved optical Doppler tomography, IEEE Journal of Selected Topics in Quantum Electronics 2001 (6),931-935.
    [70].Z.H. Ding, Y.H. Zhao, H.W. Ren, et al, Real-Time Phase-Resolved Optical coherence tomography and optical doppler tomography, Optics Express, 2002, Vol. 10 , Num.5, 236-245.
    [71]. V. Yang, M. L. Gordon, I. A. Vitkin, et al, High speed, wide velocity dynamic range Doppler optical coherence tomography, Optics Express, 2003, 11(7), 794-809.
    [72]. Y. Zhao, Z. Chen, C. Saxer, et al, Phase-resolved optical coherence tomography and optical Doppler tomography for imaging blood flow in human skin with fast scanning speed and high velocity sensitivity, Optics Letters, 2000, 25, 114-116.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700