用户名: 密码: 验证码:
结构连接失效的监测与辨识研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
航空航天结构的连接处是容易发生螺钉连接失效的部位,为了防止结构损伤所带来的灾难或损失,必须对结构进行有效的监测。光纤布拉格光栅传感器由于体积小、重量轻、抗电磁干扰、可波分复用以及波长编码等优点,可用来监测航空航天结构的应变和损伤,在航空航天结构健康监测领域中有着广阔的应用前景。
     本文以航空航天结构健康监测需求为背景,以加筋板为研究对象,针对螺钉连接失效的安全性问题,研究了一套基于光纤光栅应变测量的健康监测系统。
     本文首先阐述了本课题的研究背景,包括结构健康监测和光纤布拉格光栅的概述,以及国内外基于光纤光栅的结构健康监测的研究现状。其次,阐述了光纤布拉格光栅的工作原理,在此基础上对光纤光栅传感应用的一些技术要点进行了探讨。接着,介绍了加筋板连接失效监测系统的基本组成和连接失效的模式分类定义,主要包括了加筋铝板的应变场的有限元分析和光纤光栅传感监测系统的设计。最后,论述了该系统的模式识别算法研究,采用支持向量机和BP神经网络的算法对螺钉脱落的位置以及程度进行了判定,针对航空航天结构的特点,重点探讨了识别算法的泛化性能。
     本课题得到了国家自然科学基金资助项目(50278029、60772072)、航空科学基金资助项目(04A52002、20060952)和教育部新世纪优秀人才资助计划项目(NCET-04-0513)的资助。
The joint of aviation aerospace structure is where the bolt joint invalidation easy happens, to prevent from disasters and losses incurred by structural damage, it is necessary to monitor structure effectively. The fiber Bragg grating sensors have lots of advantage, such as small size, light weight, anti-electromagnetism interference, wavelength division multiplexing, wavelength code and so on ,so they have a vast of applied foreground in the field of aviation aerospace structure health monitoring.
     On the background of Aeronautics and Astronautics structural health monitoring requirement, on a stiffened plate, aimed at the safety matter of structure joint invalidation, build a health monitoring system based on fiber Bragg grating sensor's strain monitoring. In the thesis the discussion as following:
     The research background of this topic is introduced first, including summary of structure health monitoring and fiber Bragg grating, and domestic and international condition of structure health monitoring based on fiber Bragg grating. Secondly, working principle of fiber optic Bragg sensor is introduced. on the basis of the principle, the paper probed the technical points in the sensing applications of optic Bragg sensor. Thirdly, the joint invalidation monitoring system aimed on stiffened plate and the definition of joint invalidation modes are introduced, its main content consists of the finite element analysis about strain field on the plate and the monitoring system design. Fourthly, the pattern recognition algorithms in this system are discussed, positions and degrees of screwed off bolt are recognized. The research emphasis aimed to the feature of aviation aerospace structure is recognition algorithm’s generalization ability.
引文
[1]袁慎芳,结构健康监控,北京,国防工业出版社,2007.
    [2]陶宝祺主编,智能材料结构,北京,国防工业出版社,1997.
    [3]黄尚廉,陶宝祺,沈亚鹏,智能结构系统——梦想、现实与未来,中国机械工程,2000,11(1):32-34.
    [4]刘小会,先进光纤传感器及其在材料结构性能测试中的应用,硕士学位论文,南京航空航天大学,2003.
    [5] Kersey Alan D, A Review of Recent Developments in Fiber Optic Sensor Technology, Optical Fiber Technology, 1996, 2(3):291-317.
    [6] Lee Byoungho. Review of The Present Status of Optical Fiber Sensors. Optical Fiber Technology,2003,9(2):57-79.
    [7] Hill K O, Meltz G. Fiber Bragg Grating Technology Fundamentals and Overviews, Journal of Lightwave Technology, 1997, 15(8): 1263-1276.
    [8] Meltz G, Morey W W,Glenn W H. Formation of Bragg Gratings in Optical Fibers by a Transverse Holographic Method,Optics Letters,1989,14(15): 823-825.
    [9] Li C, Zhang Y M, Tian X F et al. Study of Wedge-Adjusted Talbot Interferometer for Writing Fiber Grating with Different Inscribed Bragg Wavelength, Optical Engineering,2003,42(12): 3452-3455.
    [10] Michael N. Trutzel, Karsten Wauer, Daniel Betz, et al. Smart Sensing of Aviation Structures with Fiber-optic Bragg Grating Sensors[C], SPIE, 2000,3986:134-143.
    [11] Wolfgang Ecke, Stephan Grimm et al. Optical Fiber Grating Sensor Network Basing on High-Reliable Fibers and Components for Spacecraft Health Monitoring[C],SPIE,2001,4328:160-167.
    [12] Daniel Betz, Lothar Staudigel et al. Test of a Fiber Bragg Grating Sensor Network for Commercial Aircraft Structures[J], Proc. OFS-16, 2002: 55-58.
    [13] Toshimichi Ogisu, Masakazu Shimanuki et al. Development of Damage Monitoring System for Aircraft Structure Using a PZT Actuator/FBG Sensor Hybrid System[C],SPIE, 2004:425-436.
    [14] Ramesh Sundaram, G.M.Kamath, Nitesh Gupta et al. Structural health monitoring of co-cured composite structures using FBG sensors, Proc. of SPIE,2005,5764: 559-570.
    [15] Shinji Komatsuzaki, Seiji Kojima,Akihito Hongo et al,Development of high -speed optical wavelength interrogation system for damage detection in composite materials(C),SPIE,2005,5758 :51-61.
    [16] Toshimichi Ogisu, Masakazu Shimanuki et al, Development of Damage Monitoring System for Aircraft Structure Using a PZT Actuator/ FBG Sensor Hybrid System(C), SPIE, 2004, 5388 :425-436.
    [17]陶宝祺,梁大开等,强度自适应智能复合材料结构,航空学报,1994,15(3):280-286.
    [18]袁慎芳,陶宝祺等,自诊断损伤区域和级别的智能复合材料结构,复合材料学报,1997,14(1):96-100.
    [19]梁大开,陶宝祺.智能复合材料结构中偏振式光纤传感器系统的研究.航空学报,1998,19(3):335-337.
    [20]熊克,自适应复合材料结构的研究进展,1996中国材料研讨会论文集.
    [21]黄尚廉,光纤机敏结构评述,半导体光电,1995,16(3):203-206.
    [22]张博明,埋多功能光纤传感器智能材料与结构研究,博士学位论文,哈尔滨工业大学,1998.
    [23]杨建良,郭照华等,机敏材料与结构中传感光纤集成技术初探,光纤与电缆及其应用技术, 97(3):47-50.
    [24]徐宁光,孙良新,孙义林等,机织复合材料内部损伤的图像检测方法研究,数据采集与处理,1998,13(4):335-338.
    [25]芦吉云,梁大开,李东升,潘晓文,F-P光纤传感器及光纤Bragg光栅传感器应用于光纤智能夹层的研究,应用激光,2005,25(3):183-185.
    [26]张志鹏,W A Gambling著,光纤传感器原理,中国计量出版社,1991.
    [27]廖延彪,光纤光学,清华大学出版社,2000.
    [28]李川,张以谟,赵永贵等,光纤光栅:原理、技术与传感应用,科学出版社,2005.
    [29]贾宏志,光纤光栅传感器的理论和技术研究,博士学位论文,中国科学院西安光学精密机械研究所,西安,西安光学精密机械研究所,2000.
    [30] J.Jung,H. Nam, J.H.Lee, Simultaneous measurement of strain and temperatureby use of a single fiber Bragg grating and an erbium-doped fiber amplifier, Appl.Opt,1999,38(13):2749-2751.
    [31] Weis R S, Kersey A D, Afourelement filter grating sensor array with phase-sensitive detection, IEEE Photonics Tech Letter, 1994, 6(12): 1469-1472.
    [32] Kersey A D, Berkff T A, Morey W W, Multiplexed fiber Bragg grating sensor system with a fiber Fabry-Perot wavelength filter, Opt Letter, 1993, 18(16): 1370-1372.
    [33]黄国权主编,有限元法基础及ANSYS应用,北京,机械工业出版社,2004年.
    [34]东方人华主编,ANSYS7.0入门与提高,清华大学出版社,2004.
    [35]姜勇,张波编著,ANSYS7.0实例精解,清华大学出版社,2003.
    [36]苗苗,基于光纤光栅的结构连接失效及应变监测研究,硕士学位论文,南京航空航天大学,2007.
    [37]徐丽娜编著,神经网络控制,电子工业出版社,2003.
    [38]虞和济,陈长征,张省等,基于神经网络的智能诊断,冶金工业出版社,2002.
    [39]高隽,人工神经网络原理及仿真实例,机械工业出版社,2003.
    [40]张炼钢,钟铬,李桂青等,神经网络在结构损伤模拟中的应用,武汉工业大学学报,1996, 18(4):39~42.
    [41]陈永义,俞小鼎,高学浩,冯汉中,处理非线性分类和回归问题的一种新方法――支持向量机方法简介,应用气象学报,2004,15(3):345-353.
    [42] Vapnik V N,Statistical Learning Theory,John Wiley & Sons,Inc. , New York , 1998.
    [43]刘龙,孟光,支持向量机回归算法在梁结构损伤诊断中的应用研究,振动与冲击,2006,25(3):99-100,126.
    [44]闫维明,何浩祥,马华,周锡元,基于粗糙集和支持向量机的空间结构健康监测,沈阳建筑大学学报,2006,22(1):86-90.
    [45]刘冰,多类SVM分类算法的研究和改进,电脑知识与技术,2007,06:1590-1593.
    [46]赵春晖,陈万海,郭春燕,多类支持向量机方法的研究现状与分析,智能系统学报,2007,2(2):11-17.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700