用户名: 密码: 验证码:
梁端翼缘扩大型梁柱节点受力性能的试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
钢材具有很好的延性,所以一直以来,人们认为在强震中钢框架能够表现出很好的强度和延性来抵抗地震荷载。在1994年美国的Northridge地震和1995年日本的阪神地震中,传统的钢结构梁柱连接节点中发生了很多脆性裂纹,这些裂纹大多产生在梁端翼缘焊缝处,随后,朝柱翼缘和梁腹板处延伸。节点在产生塑性变形时能消耗相当一部分从地震中吸收的能量,而脆性裂纹的出现阻止了焊接节点塑性的发展。北岭地震以后,人们通过大量的试验研究和理论分析来提高梁柱节点的性能,其提高的主要途径是增强节点或者削弱梁段来提高梁的塑性变形能力,从而耗散地震能量。
     本文所研究的梁端翼缘扩大型节点是加强型节点中的一种,其中包括翼缘放大型和翼缘侧板加强型两种类型,尽管此前已经有人提到过侧板加强型节点,但试验研究很少。本文通过四个梁端翼缘扩大型梁柱节点在地震荷载作用下的试验研究,对其破坏模式和抗震性能进行了研究,主要内容包括:
     1.参照现已研究比较成熟的翼缘削弱型梁柱节点的削弱部位翼缘几何尺寸,确定了扩大翼缘的长度。根据转移塑性铰的原则,算得合理的翼缘宽度尺寸。并通过Ansys的分析验证,从理论上保证了试验节点截面的合理性。
     2.进行梁端翼缘扩大型钢结构梁柱节点在往复荷载下的伪静力试验。试验测得了梁端荷载、位移、柱子转角和节点域剪切变形,从而得到了滞回关系曲线;同时也测得了梁翼缘和腹板上应变数据,并对试验现象进行了观测。
     3.基于试验结果,分析了梁端翼缘放大型节点和侧板加强型节点在地震荷载作用下的破坏机制、承载力、耗能能力、变形能力、刚度以及梁翼缘和腹板上应力的分布状态。对两类节点抗震性能的比较发现,所有节点都能有效的将塑性铰外移,但翼缘放大型节点在抗震性能和转移塑性铰方面优势更加明显。
Steel moment-resisting frames were believed to be able to develop the strength and ductility required to resist strong seismic loading because steel is ductile. However, widespread and unpredicted brittle fractures have been found in weld steel beam-column connections (weld-flange-bolted-web connections) of moment-resisting frames shaken during the Northridge earthquake in 1994 and the Kobe earthquake in 1995. Such fractures were most often initiated at the bottom flange weld and propagated into the column flange and the beam web. The brittle failure prevents the welded moment connections from exhibiting the inelastic behaviour expected to resist earthquake loading. Since the Northridge earthquake, numerous experimental and analytical studies have been conducted to improve connection performance. The improvement is based mainly on strengthening the connection or weakening the beam to develop stable inelastic behaviour that will dissipate a large portion of the energy absorbed from the earthquake.
     The Beam-to-column connection with beam-end horizontal haunch is a kind of reinforced beam-to-column connections. It includes two categories of connections. One of the two categories is flange-widened connections. The other category is the side flange-reinforced connections. Though the side flange-reinforced connection has been mentioned, yet very limited test data are available. Four specimens were fabricated and tested to clarify the behaviour and failure mode of the connections with beam-end horizontal haunch under seismic loading. The main contests are listed as follows:
     Firstly, ampliative flange length was determined referring to reduced beam section connections which have had ripe theory. The nessesary width of reinforced flange was calculated on the basis of moving the location of the beam plastic hinge away from the face of the column to the narrowest section of the beam flange. Also, the decided flange-enlarged sections were proved to be appropriate by ansys ansysis.
     Secondly, hypocritical statics test about connections with beam-end
引文
1 SAC Joint Venture. Interim guidelines: evaluation, repair, modi-fication and design of welded steel moment frame structures.Report no. SAC-95-02, FEMA 267, Federal Emergency ManagementAgency, Washington DC, 1995
    2 William E Gates, Manuel Morden. Professional Structural Engineering Experience Related to Welded Steel Moment Frames Following the Noridge Earthquake[J]. The Structrural Design of Tall Buildings, 1996, 5(1): 29~44
    3 Duane K Miller. Lessons Learned from the Northridge Earthquake[J]. Engineering Structures, 1998, 20(4~6): 249~260
    4 李国强等.强震下钢框架梁柱焊接连接的断裂行为[J]. 建筑结构学报,1998,19(4):19~27
    5 M. D. Engelhardt and T. A. Sabot. Seimic-resistant steel moment connections: development since the 1994 Northridge earthquake. Construction Research Commucications Limited, 1997 ISSN: 1365~0556
    6 候宝隆(编译).国外几种钢结构连接的新工法.钢结构,2001,16(4):62
    7 阳勇波.两种钢框架节点抗震工法比较. 山西建筑,2005,31(12):41~42
    8 FEMA-350. Recommended seismic design criteria for new steel moment frame building [S]. 2000, (3): 38~42
    9 FEMA-355D. Post-Northridge Welded Flange Connections[J]. J. construct. Steel Res, 1997, 42(1): 49~70
    10 Cheng-Chih Chen, Shuan-Wei Chen, Ming-Dar Chung, Ming-Chih Lin. Cyclic behaviour of unreinforced and rib-reinforced moment connections. Journal of Constructional Steel Research, 2005, 61: 1~21
    11 梁军,黎永,曾常阳.框架加腋梁-柱刚性结点的非线性分析.广东土木与建筑,2003,12(12):14~16
    12 茹继平,杨娜,杨庆山. 翼缘削弱型钢框架梁柱节点的性能研究综述.2004,21(1):61~66
    13 Egor Paul Popov, Tzong-Shuoh Yang, Shih-Po Chang. Design of steel MRF connections before and after 1994 Northridge earthquake. EngineeringStructures, 1998, 20(12): 1030~1038
    14 Sheng-jin Chen. Y.C.Chao. Effect of composite action on seismic performance of steel moment connections with reduced beam sections. Journal of Constructional Research, 2001, (57): 417~434
    15 Scott L. Jones, Gary T. Fry, Michael D. Engelhardt. Experimental evaluation of cyclically loaded reduced beam section moment connections. Journal of Structural Engineering, 2002, 128(4): 441~451
    16 T. Kim1, A. S. Whittaker, A. S. J. Gilani, V. V. Bertero, S. M. Takhirov. Experimental Evaluation of Plate-Reinforced Steel Moment-Resisting Connections. ASCE,2002, 128(4): 483~491
    17 Cheng-Chih Chen, Jen-Ming Lee, Ming-Chih Lin. Behaviour of steel moment connections with a single flange rib. Engineering Structures, 2003, (25): 1419~1428
    18 James C. Anderson, Jean Duan, Yan Xiao, Peter Maranian. Cyclic testing of moment connections upgraded with weld overlays. Journal of Structural Engineering, 2002, 128(4): 509~516
    19 Duane K.Miller.Lessons learned from the Northridge earthquake. Engineering structures.1998, 20(4~6): 249~260
    20 K D Kim.Monotonic and cyclic loading model for panel zones in steel moment frames[J]. J.Construct.Steel.Res, 2002, 58(5): 605~635
    21 Chia-Ming Uang, Duane Bondad. Cycle performance of haunch repaired steel moment connections: experimental testing and analytical modeling. Enginneering Structures, 1998, 20(4~6): 552~561
    22 Cheol-Ho Lee, Jong-Hyun Jung, Myoung-Ho Oh, En-Sook Koo. Cyclic seimic testing of steel moment connections reinforced with welded straight haunch. Engineering Structures, 2003, (25): 1743~1753
    23 陈宏、李兆凡、石永久等.高层钢框架新型梁柱节点抗震性能试验研究[J].建筑结构学报,2002,23(3):2~7
    24 陈宏、石永久、王元清、赵大伟. 钢框架节点受力性能的非线性分析[J]. 工业建筑, 2001,31(5):67~69
    25 杨尉彪,高小旺,易方民等.高层建筑钢结构梁柱节点试验研究.建筑结构学报,2001,31(8):3~8
    26 吴芸,吴华英,张溶,彭少民,狗骨式刚性连接钢框架结构抗震性能试验研究,武汉理工大学学报,2003,25(5):37~39
    27 杨庆山教授, 梁腹板开圆孔的钢框架抗震节点, 中国安全科学学报, 2005,15(2):45~50,40
    28 湖南大学,太原工业大学,福州大学合编.建筑结构试验(第二版).中国建筑工业出版社,1991 年
    29 GB 50011-2001 建筑抗震设计规范.中华人民共和国国家标准,中国建筑工业出版社,2001 年
    30 JGJ 99-98 高层民用建筑钢结构技术规程. 中华人民共和国国家标准,中国建筑工业出版社,1998 年
    31 GB 50017-2003 钢结构设计规范. 中华人民共和国国家标准,中国计划出版社,2003 年
    32 陈绍蕃(著).钢结构设计原理(第三版).科学出版社,2005 年 4 月
    33 钟善桐(主编).钢结构,中国建筑工业出版社,1988 年
    34 FEMA-355D. Post-Northridge welded flange connections[S]. 2000: 26~73
    35 刘其祥,蔡益燕,朱致信,顾泰昌.多高层房屋钢结构梁柱刚性连接节点的抗震设计.建筑结构,2001,31(8):9~12
    36 姚启均.金属机械性能试验常用数据公式.中国工业出版社,1962 年 5 月
    37 中国建筑部.建筑抗震试验方法规程(JGJ101-96).北京:中国建筑工业出版社,1996 年
    38 李忠献(编著).工程结构试验理论与技术.天津大学出版社,2004 年 3月
    39 刘界鹏.方钢管高强混凝土压弯构件滞回性能研究.工学硕士论文,哈尔滨:哈尔滨工业大学,2003 年 6 月
    40 韩林海,杨有福著.现代钢管混凝土结构技术.中国建筑工业出版社,2004 年
    41 WRC and ASCE, Plastic Design in Steel, a Guide and Comment ary, Seconded. ASCE, 1971: 45, 69
    42 陈宏,李兆凡,石永久,王元清. 钢框架梁柱节点恢复力模型研究. 工业建筑, 2002, 32(6):64~65, 59
    43 王传志,滕智明.钢筋混凝土结构理论.中国建筑工业出版社,1985 年 3月
    44 过镇海,时旭东.钢筋混凝土原理和分析.清华大学出版,2003 年 12 月
    45 工程建设标准规范分类汇编(修订版). 建筑结构抗震规范,中国建筑工业出版社,中国计划出版社,2003 年 11 月

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700