用户名: 密码: 验证码:
面向IC制造的净化机器人的研究与设计
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
集成电路(IC)是电子信息产业的核心,是推动国民经济和社会信息化发展的高新技术之一。应用于IC的制造装备是IC产业的发展支柱,而更高性能的IC制造装备的研制又在整个IC产业中扮演着技术先导的角色。净化机器人是IC制造装备中关键设备,负责半导体硅片在各个工序之间的传输与定位工作,它的工作性能直接影响着硅片的生产效率和制造质量。因此对净化机器人的研制和关键技术的探讨具有积极的意义。
     本文首先对国内外净化机器人的研究和发展现状进行介绍,指出了其研究特点和关键技术。然后针对IC制造的环境洁净度与硅片传输任务的要求,提出净化机器人的构型原则。并对净化机器人的两种主要构型进行了比较分析,最后确定了R-θ型(圆柱坐标型)结构作为本课题研制净化机器人的构型。
     基于上述构型,进行了净化机器人机械本体的设计。首先对其末端执行器的径向直线伸缩运动展开分析,得出了实现该运动的必要条件,并采用两组行星轮系与连杆机构的组合形式来实现末端执行器的运动,此外还对该机构进行了运动学和动力学分析,为电机的选择以及控制净化机器人的动态性能和静态特性提供理论基础。其次,为了满足硅片制造环境洁净度的要求,将易产生尘埃粒子的污染源置于硅片制造环境之外,以带传动的方式将动力从低洁净环境传输到高洁净环境,带动各节手臂运动。最终的实际结构是将驱动电机、减速装置等置于机座内部,操作手臂置于工作环境之中,工作环境与机座之间采用密封装置进行隔离,这种结构布置方式是本课题的新颖之处。
     控制系统是基于PC机与MPC02运动控制卡进行了搭建,伺服系统为半闭环结构,同时采用安川(YASKAWA)交流伺服电机作为驱动元件。其中PC机用于完成上层管理功能,负责人机界面的管理和控制系统的实时监控方面的工作。MPC02运动控制卡作为下层运动控制器,用于完成运动控制的所有细节,如脉冲和方向的输出、自动升降速的处理、原点和限位等信号的检查等。由于净化机器人执行的是点对点的搬运操作,故交流伺服电机选用位置控制模式。同时,又以Windows 2000操作系统为开发和运行平台,采用功能强大的应用程序开发工具Visual C++6.0进行净化机器人软件系统的设计与开发。给出了软件系统用户层与控制层这两个模块的软件结构框图,并对控制层中直线运动模块、插补运动模块和“门”形运动模块的进行了研究与编写。
     最后本文完成了净化机器人整机的组装和控制系统的调试。初步调试结果表明,净化机器人可实现硅片传输任务的要求,同时本身也具有一定的应用洁净度。
The intergrated circuit (i.e. IC) is the hard-core of the electron information industry, and one of the high technologies which accelerate the development of national economy and society information. The manufacturing equipments play the important role in IC industry. The clean robot, with responsibility for handling the wafer to shuttle among the different modules, is the key equipment of IC manufacturing. So, to research and develop the clean robot is very significant.
    Firstly, based on the existing achivements of research and development on the clean robot in the world, the paper indicates its important features and key technologies. Then, according to the requirements of the environment cleanliness and wafer transferring task, the configuration principles of the clean robot is introduced. And based on the comparison of two main configuration on the clean robot, the R-θ(cylindrical coordinate) robot is adopted.
    According to the above configuration, the robot mechanical body is designed. The radial rectilinear stretching motion is firstly analysed, and its condition is deduced. Then two planetary gear mechanisms are assembled to realize the motion. In addition, the kinematics and dynamics analysis of arm mechanism is done, which provide the theoretic basis for the selection of servomotor and for holding the good dynamics and static performance of the clean robot. Secondly, to meet the requirement of environment cleanliness, the equipments producing the dust particles are placed out of wafer environment. The belt transimission mechanism is used to transfer the power from the lower clean environment to higher clean environment, and to drive the arm. The layout of structure is the innovation of the paper.
    Based on PC and MPC02 motion control card, the open control system is conveniently formed. The half-closed loop servo system adopts the YASKAWA AC servomotor to act as the driving parts. The role of PC acting as the host supervisor is to communicate with system and carry out the real-time control through the user interface. MPC02 card is used as the substrate controller with responsibility for calculating the motion position of robot. Because of completing the wafer transferring task between any two points, the position control mode of servomotor is applied. In the meantime, using the Windows 2000 as the running platform and Visual C++ 6.0 as the development tool, the controlling software system is developed. The linear, interporlation and any two points movement modules' coding is researched.
    At last, the clean robot mechanism system has been assembled, and the control system was debugged. The results of debugging experiment proved that it is easy for the clean robot to perform high accuracy, high repeatability and high cleanliness operation.
引文
[1] 汪劲松,朱煜.我国“十五”期间IC制造装备的发展战略研究.机器人技术与应用,2002,2:5-9.
    [2] 日本机器人学会编.机器人技术手册.北京:科学出版社,1996.
    [3] 李正贤.一种机械手式上下片传输机构.电子工业专用设备,1995,24(4):32-33.
    [4] Dave Calhoun. Wafer Handling Management Strategies. Mirco, March 1998.
    [5] Hiromitsu K. Wafer processing system including a robot. U. S Patent, 568899B1, 2003.
    [6] Martin Hosek, Timothy Bleigh. Brooks Automation expands control capability of precision industrial robots. Industrial Robot, 2002, 29(4): 334-338.
    [7] LOPEZ MJ, WOOD SC. Systems of multiple cluster tools: configuration, reliability and performance. IEEE Trans on Semiconductor Manufacturing, 2003, 16(2): 170-180.
    [8] Chiaki Tsuzuku. The trend of robot technologu in semi-conductor and LCD industry. Industrial Robot, 2001, 28(5): 406-413.
    [9] 沈世德.实用机构学.北京:中国纺织出版社,1977.
    [10] http://www.adept.com/products/details.aspgpid=63.
    [11] Direct Drive Wafer and Reticle Handling Robot. ADEPT TECHNOLOGY, INC.
    [12] http://www.innovativerobotics.com/products.htm.
    [13] IR-820 High Performance SCARA Robot. Innovative Robotic Solutions, Inc.
    [14] Anthony C. Bonora, Roger G. Hine, Michael Krolak, John F. Grilli. WORK PIECE HANDLING ROBOT. U. S Patent, 6634851B1, Oct. 10, 2003.
    [15] http://www.rorze.com/english/Tech/wafer/RA310/RA310.html.
    [16] 机械设计手册编委会.机械设计手册(新版,第2卷).北京:机械工业出版社,2004.
    [17] Masafumi Kanetomo, Hideo Kashima, Takamichi Suzuki. Wafer-transfer robot for use in ultrahigh vacuum. American Vacuum Society, 1997, 15(3), 1385-1388.
    [18] Takashi Katsuma. Vacuum manipulator for semiconductor manufacturing equipment. Industrial Robot, 2002, 29(1): 324-328.
    [19] Chueng, Green. Permanent magnets applied to magnetic coupling. World Pumps, 2005, 2005(468): 35-37.
    [20] 谭伟,赵锡芳.机器人直接驱动技术研究现状及发展.机械工程师,2000,4:5-8.
    [21] 谭冠政,王越超.工业机器人时间最优轨迹规划及轨迹控制的理论与实验研究.控制理论与应用,2003,20(2):185-192.
    [22] 张红强.工业机器人时间最优轨迹规划:(硕士学位论文).长沙:湖南大学,2004.
    [23] S. C. Hu, Y. K. Chuah, M. C. Yen. Design and evaluation of a minienvironment for semiconductor manufacture processes. Building and Environment, 2002, 37: 201-208.
    [24] 许钟麟.空气洁净技术原理.北京:科学出版社,2002.
    [25] 许钟麟.洁净室设计.北京:地震出版社,1998.
    [26] 陆际联.机器人在电路装配和洁净室中的应用.机器人情报,1990,1:11-14.
    [27] 孙禹辉,康仁科,郭东明,金洙吉,苏建修.化学机械抛光中的硅片夹持技术.半导体技术,2004,29(4):10-14.
    [28] 丛明,张士军,金洙吉,康仁科.径向直线运动型硅片传输机器人的设计与研究.制造业自动化,2005,27(2):35-37.
    [29] 康仁科,郭东明,张士军,丛明等.一种传输机器人.中华人民共和国,实用新型,200420113013.1.
    [30] Cong Ming, Zhou Yumin, Jiang Ying. An Automated Wafer-handling System based on the Integrated Circuit Equipments. IEEE International Conference on Robotics and Biomimetics, Hong Kong and Macau, China, 2005: 240-245.
    [31] Saeed B.Niku著,孙富春译.机器人学导论——分析、系统及应用.北京:电子工业出版社,2004.1.
    [32] 殷际英,何广平.关节型机器人.北京:化学工业出版社,2003.
    [33] 胡耀臻.片子自动传输机械手.电子工业专用设备,1997,26(1):39-42.
    [34] 张士军.硅片传输机器人的研制:(硕士学位论文).大连:大连理工大学,2005.3.
    [35] 曲秀全,焦映厚,陈照波,阚利宏.单自由度平面连杆机构等效转动惯量计算公式.哈尔滨工业大学学报,2004,36(5):610-623.
    [36] THK综合商品目录.THK CO.,LTD.
    [37] L. E. Kavraki, P. Svetska, J. C. Latombe, M. Overmars. Probabilistic roadmaps for path planning in high-dimensional configuration Spaces. IEEE Tr. on Robotics and Automation. 1996, 12: 566-580.
    [38] 唐伯雁.自攀爬幕墙清洗机器人机械机构的设计与研究:(博士学位论文).北京:北京工业大学,2005.
    [39] 赵春红,秦现生,唐虹.基于PC的开放式数控系统研究.机械科学与技术,2005,24(9):1108-1113.
    [40] 石宏,蔡光起,史家顺.开放式数控系统的现状与发展.机械制造,2005,43(490):18-21.
    [41] 王天然,曲道奎.工业机器人控制系统的开放式体系结构.机器人,2002,24(3):256-261.
    [42] MPC02运动控制器.步进机电有限公司.
    [43] 肖英奎,尚涛,陈殿生.伺服系统实用技术.北京:化学工业出版设,2004.
    [44] 钱平.伺服系统.北京:机械工业出版社,2005.
    [45] 谢敬华.串并联聚焦超声机器人控制系统的研究与开发:(硕士学位论文).武汉:华中科技大学,2003.
    [46] 周玉敏.硅片传输机器人控制系统的研究与开发:(硕士学位论文).大连:大连理工大学,2005.
    [47] 万大平.数控加工仿真教学系统的研究与开发:(硕士学位论文).重庆:重庆大学,2004.
    [48] 秦忆.现代交流伺服系统.武汉:华中理工大学出版社,1995.
    [49] 侯俊杰.深入浅出MFC(第二版).武汉:华中科技大学出版,2001.
    [50] Jeff Prosise.MFC Windows程序设计.北京:清华大学,2001.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700