用户名: 密码: 验证码:
超声萃取对茯苓菌核多糖提取率及结构影响的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
茯苓是(Poria cocos wolf)一种附着在松树根上生长的真菌,为多孔菌科植物,是我国传统的中药材。茯苓多糖是茯苓中重要的生物活性物质,具有利水渗湿、健脾宁心、抑菌杀菌、降血糖、抗病毒、调节免疫力、诱生与促干扰素和白细胞调节素等作用,对人体有较高的保健功能和药用价值。目前关于超声波对茯苓多糖提取率影响的研究工作已有报道,但对超声波强化提取对水溶性茯苓菌核多糖和碱溶性茯苓菌核多糖提取率及结构影响的系统研究相对较少,尚未发现用原子力显微镜对它们的微结构进行直接观测的报道。因此,本项目以茯苓菌核为原料,利用超声波对其中的水溶性多糖和碱溶性多糖分别进行提取,并将提取效果与传统提取方法进行比较,揭示超声萃取茯苓菌核多糖(水溶性多糖、碱溶性多糖)对其提取率、单糖组成种类和各组分间比例及结构的影响规律;通过对超声波强化提取茯苓菌核多糖的内在机理进行初步研究,为人们对超声萃取中草药多糖对其结构及生物活性影响的研究提供必要的基础数据和实验依据。论文的主要研究内容及相应的实验结果可归纳为以下几个方面:
     (1)确定超声波辅助热水浸提水溶性茯苓菌核多糖的最佳提取工艺,以多糖得率为指标,在单因素试验的基础上采用正交试验得出了超声波提取水溶性茯苓菌核多糖的最佳工艺条件,即超声时间25min、提取温度80℃、液围比60,并与传统热水浸提法进行比较;同时,用环境扫描电子显微镜对超声波处理前后茯苓菌核细胞结构的变化情况进行研究,结果发现未经超声处理的茯苓菌核细胞整体比较完整,表面几乎没有裂纹,不同细胞间通过胞间层连接在一起:经25min超声处理后,多数茯苓菌核细胞上都出现不同程度的裂痕,有的细胞甚至已经完全崩溃,大多数胞间层也已经被破坏。
     (2)采用传统热水浸提法和超声波辅助热水浸提法,按照优化后的工艺组合分别对脱脂茯苓菌核粉末进行提取,得多糖PPTH和PPUH。用傅立叶变换红外光谱(FTIR)分析糖类官能团,气相色谱法测定单糖组成,原子力显微镜观察多糖结构,并将二者的测定结果进行对比,结果表明:采用传统热水浸提得茯苓菌核多糖(PPTH)与超声波辅助热水浸提得茯苓菌核多糖(PPUH)具有相同的单糖组成,都包含核糖、木糖、甘露糖、果糖、半乳糖和葡萄糖,二者的红外吸收谱也基本相同,原子力显微镜扫描分析显示,PPTH整体呈现网状结构,而PPUH主要以长短不一的近棒状结构存在,推测可能是由于超声辐射对水溶性茯苓菌核多糖的网状结构造成破坏,促使其大分子链降解为较小的分子片断。由于这些小分子片段间发生聚集,因而最终形成较大“团簇棒状”结构。
     (3)采用传统碱提法和超声波辅助碱提法分别对超声辅助热水浸提所得茯苓残渣进行提取,得碱溶性茯苓菌核多糖,记为PPTA、PPUA,得率76.47%、85.4%。与潘琦、黄才欢报道的方法相比,超声辐射强化浸提缩短了提取时间,提高了碱溶性茯苓菌核多糖的提取效率,同时,在提取过程我们发现,超声辐射强化提取碱溶性茯苓菌核多糖的提取效果主要体现在第一次浸提上,可使绝大部分多糖转移至碱溶液中。用傅立叶变换红外光谱仪、原子力显微镜等仪器分析手段分别对PPTA、PPUA的糖类官能团及分子形貌进行研究,并将二者测定结果进行比较发现:二者的红外吸收光谱基本相同,表明超声波强化提取不会改变碱溶性茯苓菌核多糖的基本结构;原子力显微镜观测表明,云母表面的PPTA整体呈现网状结构,而PPUA则以长短不一,且平均链高度较小的近棒状结构存在,说明超声辐射强化提取不仅会破坏碱溶性茯苓菌核多糖的网状结构,而且对多糖不同分子间的相互作用也有一定影响。
     (4)对PPUA进行羧甲基修饰,Sevag法反复除蛋白(重复8次),经紫外光谱检测未观测到色素、蛋白质、核酸之类物质的特征吸收后透析,冷冻干燥备用。用高效液相色谱法对羧甲基茯苓多糖(Carboxymethylpachymaran,CMP)的分子量进行测定,用傅立叶变换红外光谱对CMP的结构进行表征,用原子力显微镜(Atomic force microscopy,AFM)对不同溶液环境下CMP的形态变化进行观测,实验结果表明:经过羧甲基修饰,碱溶性茯苓菌核多糖在水中的溶解性显著增加,890cm~(-1)处的β-D-葡聚糖特征吸收峰明显减弱,1333cm~(-1)处出现次甲基振动吸收峰,1606cm~(-1)处出现C=O非对称伸缩振动吸收峰,表明羧甲基化成功;高效液相色谱法测得CMP的分子量大小为1.45×10~5;原子力显微镜分析表明:在不同溶液条件下,CMP分子以不同形态存在,多糖溶液的浓度、离子强度及溶剂的物化特性均能对CMP的分子链构象及链间相互作用形式产生影响,推测可能与CMP分子内、分子间的氢键缔合及静电作用有关,CMP分子与云母基底间的吸附及静电作用也会对CMP的分子链构象及图像质量产生影响。
Poria cocos wolf, one of the traditional Chinese medicinal materials in china, is a kind of edible fungus attaching to the pine tree root which belongs to the polyporaceae plant. Polysaccharide from the poria cocos wolf is one of the most important biological active substance in the poria cocos wolf which has the activity of inducing diuresis and excreting dampness, strengthening spleen and being easy in mind, restraining and sterilizing bacteria, hypoglycemic effect, antivirus, modulateing immune function, inducing interferon and leukoregulin (LR) and so on. It is of high healthy function and medicinal value on human beings. At present, there have been papers about the effect of ultrasonication on extraction rate of polysaccharide from the poria cocos wolf, but there have been few papers about the systematic research of effect of ultrasonic enhanced extraction on extraction rate and structure of water-soluble polysaccharide and alkali-soluble polysaccharide from the sclerotium of poria cocos. Direct observation of microstructure of polysaccharides from the sclerotium of poria cocos has not been found by atomic force microscopy. Accordingly, water-soluble polysaccharide and alkali-soluble polysaccharide were extracted from the sclerotium of poria cocos by ultrasonic wave respectively in this study. Meanwhile, the extraction effect of ultrasonic wave was compare with that of traditional extraction in order to reveal the effect laws of ultrasonic extraction on extraction rate, monosaccharide composition and proportion among different components, structure of polysaccharide (water-soluble polysaccharide and alkali-soluble polysaccharide) from the sclerotium of poria cocos. Internal mechanism of extracting polysaccharide from the sclerotium of poria cocos by ultrasonic wave was preliminarily studied, which provided necessary basic data and experimental basis for the study of influence of ultrasonic extraction on structure and biological activity of polysaccharide from Chinese herbal medicine. The main research contents and corresponding results reported in the papers were summarized as follow:
     (1)The optimal extraction technology of ultrasound-assisted hot water extraction of water-soluble polysaccharide from the sclerotium of poria cocos was determined. Taking polysaccharide extraction rate as the index, the optimal extraction conditions of ultrasound-assisted hot water extraction of water-soluble polysaccharide from the sclerotium of poria cocos was determined with the orthogonal design on the basis of single factor experiment, namely ultrasonic function time: twenty five minutes, extraction temperature: 80℃, the ratio of liquid to solid: 60:1, which were compared with those of traditional hot water extracting method. At the same time, structural changes of poria cocos wolf cells were investigated before and after ultrasonic extraction by environmental scanning electron microscope. The results showed that poria cocos wolf cells without ultrasonic processing were intact and there were few cracks on their surfaces. Different cells were connected together by middle lamella. After twenty five minutes ultrasonic processing, there were craws in varying degrees on the surfaces of most of poria cocos wolf cells, some of which had been completely collapsed. Most of middle lamellas had also been destroyed.
     (2)Two kinds of water-soluble polysaccharides, which were named as PPTH and PPUH, were extracted from the sclerotium of poria cocos according to optimal extraction conditions by traditional hot water extracting method and ultrasound-assisted hot water extraction respectively. The polysaccharides functional groups were investigated by fourier transform infrared spectroscopy(FTIR). The monosaccharide compositions of polysaccharides were determined by gas chromatography. The structure of polysaccharides was analyzed by atomic force microscopy. Determination results of PPTH and PPUH were compared. The experimental results indicated that the components of PPUH were identified by GC as: ribose, xylose, mannose, fructose, galactose, glucose, which were the same as those of PPTH. Meanwhile, the infrared absorption spectras of PPUH and PPTH were basically the same. We found that PPTH on mica formed network-like structure by atomic force microscopy while PPUH existed in the form of different rod-like structure. It is presumed that ultrasonic radiation destructed network structure of water-soluble polysaccharide from the sclerotium of poria cocos, and made its macrochains degraded to small molecular fragments. Because of the aggregation of different small molecular fragments, they finally formed large cluster rod-like structure.
     (3)Two kinds of alkali-soluble polysaccharides, which were named as PPTA and PPUA, were extracted from the residue of sclerotium of poria cocos after ultrasound-assisted hot water extraction by traditional alkaline extracting method and ultrasound-assisted alkaline extraction respectively. The yields of PPTA and PPUA were 76.47% and 85.4%. Compared with using extraction methods Pan Qi, Huang Caihuan reported, using ultrasonic enhanced extraction shortened the extraction time and improved extraction efficiency. Meanwhile, it was found in the process of extraction that the extraction effects of extracting alkali-soluble polysaccharide by ultrasonic wave embodied in the first extraction, when most of polysaccharide transferred to alkaline solution. Functional groups and molecular morphologies of PPTA and PPUA were investigated by fourier transform infrared spectrometer and atomic force microscopy respectively. It was found by comparing with both of determination results that the infrared absorption spectras of PPTA and PPUA were basically the same, which basic structure of alkali-soluble polysaccharide from the residue of sclerotium of poria cocos was not changed. The observation by atomic force microscopy showed that PPTA on mica formed network-like structure while PPUA existed in the form of different rod-like structure whose average height of chain was low. It was indicated that not only was network-like structure of alkali-soluble polysaccharide from the residue of sclerotium of poria cocos destroyed, but also different intermolecular interactions of polysaccharide were influenced by ultrasonic enhanced extraction.
     (4)The structure of PPUA was modified by caboxymethyl group. The obtained polysaccharide, namely carboxymethylpachyman, was deproteinized by using Sevage method (repeated times 8). When there were no characteristic absorption peaks of pigments, protein and nucleic acid in its UV-Vis Absorption spectra, the modified PPUA was lyophilized and was reserved. The molecular weight of carboxymethylpachyman (CMP) was determined by high performance liquid chromatography. The structure of Carboxymethylpachymaran was characterized using fourier transform infrared spectroscopy. Morpological changes of carboxymethylpachymaran (CMP) were observed under different solution conditions by atomic force microscopy (AFM). After the carboxymethylation, the solubility of alkali-soluble polysaccharide from the sclerotium of poria cocos in the water was significantly increased, itsβ-D- glucan characteristic absorption peak at 890cm~(-1) became weak obviously, and its methylene vibration absorption peak and C=O antisymmetrical stretch vibration absorption peak appeared at 1333cm~(-1) and 1606cm~(-1) respectively, which indicated the carboxymethylation succeeded. The molecular weight of carboxymethylpachyman was 1.45×10~5 by high performance liquid chromatography. The analysis of AFM results showed that CMP molecules existed in different morphology under different solution conditions, and that the concentration, ionic strength and solvent physical chemistry characterisitics of polysaccharide solution had effects on the CMP chains conformation and the action mode between different molecular chains. The phenomena were considered to be related to hydrogen bond association and intramolecular and intermolecular electrostatic interactions of CMP. Meanwhile, the affinity and electrostatic interaction between CMP molecules and the mica substrate also had an influence on the CMP chains conformation and the image quality.
引文
[1]K.Y.Lee,H.J.You,H.G.Jeong,et al..Polysaccharide isolated from Poria cocos sclerotium induces NF-κB/Rel activation and iNOS expression through the Activation of p38 kinase in murine macrophages[J].International immunopharmacology.2004,4:1029-1038.
    [2]H.Kanayama,N.Adachi,M.Togami.A new antitumor polysaccharide from the mycelia of Poria cocos wolf[J].Chemical and pharmaceutical bulletin,1983,31(3):1115-1118.
    [3]Y.Y.Chen,H.M.Chang.Antiproliferative and differentiating effects of polysaccharide fraction from fu-ling(Poria cocos) on human leukemic U937 and HL-60 cells[J].Food and Chemical Toxicology,2004,42:759-769.
    [4]李羿,万德光,刘忠荣等.发酵茯苓菌丝体和天然茯苓多糖的研究[J].天然产物研究与开发,2006,18:667-669,673.
    [5]霍文,孙广利,刘鹏.正交试验法优选茯苓多糖提取工艺[J].西北药学杂志,2006,21(1):18-19.
    [6]S.C.Szu,G.Zon,R.Schnerson,et al.Ultrasonic irradiation of bacterial polysaccharides.Characterization of the depolymerized products and some applications of the process[J].Carbohydr.Res,1986,152:7-20.
    [7]潘琦,贾向云,戴蓉.茯苓皮提取茯苓多糖实验方法研究[J].云南中医学院学报,1997,20(3):13-15.
    [8]黄才欢,李炎,王秀芬。茯苓多糖的提取及其结构表征[J].广东食品工业科技,17(3):13-15.
    [9]卢艳花.中药有效成分提取分离实例[M].北京:化学工业出版社,2007:263.
    [10]詹益兴.绿色精细化工-天然产品制造法(第1集)[M].北京:科技文献出版社,2005.84.
    [11]M.Toma,M.Vinatoru,L.Paniwnyk,et al.Investigation of the effects of ultrasound on vetetal tissues during solvent extraction[J].Ultrason.Sonochem.,2001,8:137-142.
    [12]胡珂.茯苓的采收及产地加工方法[J].基层中药杂志,2000,14(1):41-42.
    [13]广西壮族自治区医药研究所,广西壮族自治区昭平县医药公司.茯苓[M].北 京:人民卫生出版社,1976:4.
    [14]河南中医学院.新编中药学[M].郑州:河南人民出版社,1973:258.
    [15]蔡德华,丁立孝,于国华等.庭院食用菌栽培技术[M].北京:农村读物出版社,1992:259.
    [16]严泽湘,严清波,刘建先.灵芝与茯苓[M].上海:上海书店出版社,2002:70.
    [17]王鹏.养生妙药--茯苓[J].食品与健康,2005,10:19.
    [18]广西壮族自治区医药研究所,广西壮族自治区昭平县医药公司.茯苓[M].北京:人民卫生出版社,1976:3.
    [19]河南省地方史志编主编.河南史志资料丛编 河南土特产资料选编[M].郑州:河南人民出版社,1986:179.
    [20]刘冰,刘耀斌.茯苓对丝裂霉素C诱发小鼠精子畸形的抑制作用[J].癌变畸变 突变,1998,10(1):48-50.
    [21]赵景春.茯苓抗诱变效应的实验研究[J].北京教育学院学报,2004,18(4):58-59.
    [22]赵吉福,何爱民,陈英杰等.茯苓抗肿瘤成分研究[J].中国药物化学杂志,1993,3(2):128-131.
    [23]Y.Mizushina,T.Akihisa,M.Ukiya,et al.A novel DNA topoisomerase inhibitor:dehydroebficonic acid,one of the lanostane-type triterpene acids from Pofia cocos [J].Cancer Sci.,2004,95(4):354-360.
    [24]G.R.Schinella,H.A.Tournier,J.M.Prieto,et al.Antioxidant activity of anti-inflammatory plant extracts[J].Life Sciences,2002,70(11):1023-1033.
    [25]Y.F.Wang,M.Zhang,D.Ruan,et al.Chemical components and molecular mass of six polysaccharides isolated from the sclerotium of Poria cocos[J].Carbohydrate Research,2004,339:327-334.
    [26]周燕霞,唐明林,殷辉安等.茯苓中多糖的提取及含量测定[J].天然产物研究与开发,2003,15(4):330-333.
    [27]王海婴主编.大学基础物理学[M].北京:高等教育出版社,2004:373.
    [28]聂金媛,吴成岩,吴世容等.微波辅助提取茯苓中茯苓多糖的研究[J].中草药,2004,35(12):1346-1348.
    [29]李俊,黄锡山,张艳军等.超声波法提取罗汉果多糖的工艺研究[J].中药材,2007,30(4):475-477.
    [30]M.Toma,M.Vinatoru,L.Paniwnyk,et al..Investigation of the effects of ultrasound on vegetal tissues during solvent extraction[J].Ultrasonics sonochemistry,2001,8:137-142.
    [31]霍文,孙广利,刘鹏.正交试验法优选茯苓多糖提取工艺[J].西北药学杂志,2006,21(1):18-19.
    [32]梅光明,李孚杰,沈思等.茯苓中碱溶性多糖的提取及其超微粉碎改性研究[J].食品科学,2007,28(10):278-283.
    [33]赵纪峰,王海军,苏晶等.中药多糖的提取分离工艺研究[J].重庆中草药研究,2007,1:29-32.
    [34]杨莉,刘亚娜.酶法在中药提取制备中的应用[J].中药材,2001,24(1):72-73.
    [35]傅荣杰,冯怡,陶俊.中药多糖类组分微波萃取与传统水煎提取的比较[J].中成药,2005,27(12):1382-1384.
    [36]冯青然,陈燕军.中药提取工艺研究进展[J].中国实验方剂学杂志,2003,Z(9):61-64.
    [37]余建国,姜正前,严晗光等.茯苓多糖对雏鸡细胞免疫活性的影响及其抗肿瘤作用[J].中国兽医科技,2004,34(11):70-73.
    [38]吕苏成,曹巧莉,张力等.茯苓多糖对正常及荷瘤小鼠免疫功能的影响[J].第一军医大学学报,1990,10(3):267-268.
    [39]吕苏成,曹巧莉,芦森等.茯苓多糖对老年人免疫功能的影响[J].上海免疫学杂志,1992,12(2):69-70.
    [40]吕苏成,曹玛莉,曹巧莉.茯苓多糖对肺癌患者细胞免疫功能及临床疗效的观察[J].上海免疫学杂志,1994,14(2):109.
    [41]陈焱,刘春晓,张积仁.茯苓多糖防石作用的实验研究[J].中华泌尿外科杂志,1999,20(2):114-115.
    [42]候安继,陈腾云,彭施萍等.茯苓多糖抗衰老作用研究[J].中药药理于临床,2004,20(3):10-11.
    [43]别尔格曼,超声[M],北京:国防工业出版社,1964:1.
    [44]G.L.Cote,J.L.Willet.Thermomechanical depolymerization of dextran[J].Carbohydrate Polymers,1999,39:119-126.
    [45]段穆德,赵保经.医用电子学[M].北京:科学技术文献出版社,1987:239-243。
    [46]物理学词典科学出版社名词室.物理学词典上、下册第5分册声学[M].科学出版社,北京,1988,67.
    [47]于淑娟,高大雄,李国基.超声波酶法提取灵芝多糖的机理研究[J].华南理工大学学报,1998,26(2):123-127.
    [48]刘艳丰,林松毅,刘静波等.超声波辅助提取笃斯越桔叶片多糖的研究[J].食品科学,2007,28(10):290-293.
    [49]顾文秀,许方萍,鞠炜渭.超声波协助提取芦荟多糖的研究[J].安徽农业科学,2007,35(17):5030-5032.
    [50]李坚斌,李琳,李冰等.超声波降解多糖研究进展[J].食品工业科技,2006,27(9):181-184.
    [51]孙润广.中国生物医学工程进展[M].西安:西安交通大学出版社,2007:747-750
    [52]R.Czechowska-Biskup,B.Rokita,S.Lotfy,et al..Degradation of chitosan and starch by 360-kHz ultrasound[J].Carbohydrate Polymers,2005,60:175-184.
    [53]E.Machova,K.Kvapilova,G.Kogan,et al..Effect of ultrasonic treatment on the molecular weight of carboxymethylated chitin-glucan complex from Aspergillus niger[J].Ultrasonics Sonochemistry,1999,5:169-172.
    [54]徐滨士.纳米表面工程[M].北京:化学工业出版社,2004:143.
    [55]钱苗根等.现代表面技术[M].北京:机械工业出版社,1999:285.
    [56]应用力学研究所吴杰颖.初试啼声-原子力显微镜教学训练[M].16.
    [57]朱杰,孙润广.原子力显微镜的基本原理及其方法学研究[J].生命科学仪器,2005,3(1):22-26.
    [58]张会臣,严立.纳米尺度润滑理论及应用[M].北京:化学工业出版社,2005:155.
    [59]S.Ikeda,Y.Nitta,T.Temsiripong,et al..Atomic force microscopy studies on cation-induced network formation of gellan[J].Food hydrocolloids,2004,18:727-735.
    [60]E.L.Adams,P.A.Kroon,G.Williamson,et al..Characterisation of heterogeneous arabinaoxylans by direct imaging of individuall molecules by atomic force microscopy[J].Carbohydrate research,2003,338(8):771-780.
    [61]A.J.Morris,A.P.Gunning,C.B.Faulds,et al..AFM Images of Complexes between Amylose and Aspergillus niger Glucoamylase Mutants,Native and Mutant Starch Binding Domains:A Model for the Action of Glucoamylase[J].Starch'Staerke,2005,57:1-7.
    [62]蔡林涛,李萍,陆祖宏.原子力显微镜观察虫草多糖分子的结构形貌[J].电子显微学报,1999,18(1):103-105.
    [63]孙润广,张静.甘草多糖螺旋结构的原子力显微镜研究[J].化学学报,2006,64(24):2467-2472.
    [64]杨世平,孙润广,陈国梁等.红枣多糖微结构的原子力显微镜观测[J].陕西师范大学学报,2005,33(3):59-61.
    [65]戴玲,廖洪梅,沈业寿等.原子力显微镜观察丹皮多糖分子的形貌结构及自组装行为[J].激光生物学报,2007,16(6):749-753.
    [66]郑丽伊,方积年.改良的苯酚-硫酸法测定多糖和寡糖含量的研究[J].中国药学杂志,1996,31(9):550-553.
    [67]Y.F.Wang,M.Zhang,D.Ruan,et al..Chemical components and molecular mass of six polysaccharides isolated from the sclerotium of Poria cocos[J].Carbohydrate Research,2004,339:327-334.
    [68]中国科学院数学研究所.正交实验法[M].北京:人民教育出版社,1975:6-12.
    [69]陈晓萍.枸杞中性多糖的糖链结构分析[J].浙江农业大学学报,1996,22(1):37-40.
    [70]张惟杰.糖复合物生化研究技术[M].杭州:浙江大学出版社,1999:37-38.
    [71]康学军,曲见松,顾忠泽.白芷多糖的分析[J].分析化学研究简报,2006,34(4):533-535.
    [72]A.P.Gunning,A.R.Kirby,V.J.Morris,et al..Imaging bacterial polysaccharides by AFM[J].Polymer Bulletin,1995,34:615-619.
    [73]A.P.Gunning,A.R.Kirby,V.J.Morris.Imaging xanthan gum in air by ac "tapping" mode atomic force microscopy[J].Ultramicroscopy,1996,63(1):1-3.
    [74]Vinatoru.An overview of the ultrasonically assisted extraction of bioactive principles from herbs[J].Ultrasonics Sonochemistry,2001,8:301-303.
    [75]张惟杰.糖复合物生化研究技术[J].杭州:浙江大学出版社,1999:193-198.
    [76]V.J.Morris,G.J.Brownsey,P.Cairns,et al..Molecular origins of acetan solution properties[J].Int J Biol Macromol,1989,11(6):326-328.
    [77]詹益兴.现代化工小商品制法大全 第5集[M].长沙:湖南大学出版社,2001:20.
    [78]A.Ebringerova,Z.Hromadkova.The effect of ultrasound on the structure and properties of the water-soluble corn hull heteroxylan[J].Ultrasonics Sonochemistry,1997,4:305-309.
    [79]Z.Hromadkova,J.Kovacikova,A.Ebringerova.Study of the classical and ultrasound-assisted extraction the corn cob xylan[J].Industrial crops and products, 1999,9:101-109.
    [80]R,C.Sun,J.Tomkinson.Characterization of hemicelluloses obtained by classical and ultrasonically assisted extractions from wheat straw[J].Carbohydrate polymers,2002,50:263-271.
    [81]M.H.Lee,C.C.Lin.Comparison of techniques for extraction of isoflavones from the root of Radix Puerariae:Ultrasonic and pressurized solvent extractions[J].Food chemistry,2007,105:223-228.
    [82]G.Binning,C.F.Quate,C.Gerber.Atomic force microscope[J].Phys Rev Lett,1986,56:930-933.
    [83]Y.L.Lyubchenko,L.S.Shlyakhtenko.Visualization of supercoiled DNA with atomic force microscopy in situ[J].Proc.Natl.Acad.Sci.U.S.A,1997,94:496-501.
    [84]H.G.Hansma,D.E.Laney,Bezanilla M,et al..Applications for atomic force microscopy of DNA[J].Biophys.J,1995,68:1672-1677.
    [85]J.Kumaki,T.Hashimoto.Conformational change in an isolated single synthetic polymer chain on a mica surface observed by atomic force microscopy[J].J.Am.Chem.Soc,2003,125:4907-4917.
    [86]A.P.Gunning,A.R.Kirby,V.J.Morris.Imaging xanthan gum in air by ac"tapping"mode atomic force microscopy[J].Ultramicroscopy,1996,63:1-3.
    [87]T.M.Mcintire,R.M.Penner,D.A.Brant.Observations of a circular,triple-helical polysaccharide using non-contact atomic force microscopy[J].Macromolecules,1995,28:6375-6376.
    [88]J.Adamcik,D.V.Klinov,G.Witz,et al..Observation of single-stranded DNA on mica and highly oriented pyrolytic graphite by atomic force microscopy[J].FEBS Letters,2006,580:5671-5675.
    [89]K.Y.Lee,H.J.You,H.G.Jeong,et al..Polysaccharide isolated from poria cocos sclerotium induces NF-KB/Rel activation and iNOS expression through the activation of p38 kinase in murine macrophages[J].International immunopharmacology,2004,4:1029-1038.
    [90]K.Hisanori,A.Norihiko,T.Masatoshi.A new antitumor polysaccharide from the mycelia of Poria cocos wolf[J].Chemical and pharmaceutical bulletin,1983,31:1115-1118.
    [91]J.Hamuro,Y.Yamashita,Ohsaka Y,et al..Carboxymethylpachymaran,a new water soluble polysaccharide with marked antitumour activity [J]. Nature, 1971, 233:486-188.
    [92] T. V. Burova, I. A. Golubeva, N. V. Grinberg, et al.. Calorimetric study of the order-disorder conformational transition in succinoglycan [J]. Biopolymers, 1996,39: 517-529.
    [93] A. Cesaro, A. Gamini, L. Navarini. Supramolecular structure of microbial polysaccharides in solution: from chain conformation to rheological properties [J].Polymer, 1992, 33: 4001-4008.
    [94] I. Kaneda, A. Kobayashi, K. Miyazaw, et al.. Double helix of Agrobacterium tumefaciens succinoglycan in dilute solution [J]. Polymer, 2002, 43:1301-1305.
    [95] A. Boutebba, M. Milas, M. Rinaudo. Order-disorder conformational transition in succinoglycan: calorimetric measurements [J]. Biopolymers, 1997, 42: 811-819.
    [96] A. Boutebba, M. Milas, M. Rinaudo. On the interchain associations in aqueous solutions of a succinoglycan polysaccharide [J]. Int. J. Bio. Macromol, 1999,24:319-327.
    [97] Y. F. Wang, L. N. Zhang, D. Ruan. Preparation and structure of five derivatives of β-(1→3)-D-glucan isolated from Poria cocos sclerotium [J]. Chin. J. Polym. Sci. ,2004,22(2): 137-145.
    [98] K. J. Wilkinson, E. Balnois, G G Leppard, et al.. Characteristic features of the major components of freshwater colloidal organic matter revealed by transmission electron and atomic force microscopy [J]. Colloids Surf. A, 1999, 155:287-310.
    [99] T. A. Camesano, K. J. Wilkinson. Single molecule study of xanthan conformation using atomic force microscopy [J]. Biomacromolecules, 2001,2:1184-1191.
    [100] E. Balnois, S. Stoll, K. J. Wilkinson, et al.. Conformations of succinoglycan as observed by atomic force microscopy [J]. Macromolecules, 2000, 33:7440-7447.
    [101] A. W. Decho. Imaging an alginate polymer gel matrix using atomic force microscopy [J]. Carbohydr. Res., 1999, 315:330-333.
    [102] Y. Jin, H. Zhang, Y. Yin, et al.. Comparison of curdlan and its carboxymethylated derivative by means of Rheology, DSC, and AFM [J]. Carbohydr. Res., 2006, 341:90-99.
    [103] E. Balnois, K. J. Wilkinson. Sample preparation techniques for the observation of environmental biopolymers by atomic force microscopy [J]. Colloids Surf., A,2002, 207:229-242.
    [104]C.Spagnoli,A.Komiakov,A.Ulman,et al..Hyaluronan conformations on surfaces:effect of surface charge and hydrophobicity[J].Carbohydr.Res.,2005,340:929-941.
    [105]V.J.Morris,A.R.Mackie,P.J.Wilde,et al..Atomic force microscopy as a tool for interpreting the rheology of food biopolymers at the molecular level[J].Int.J.Food Sci.Technol,2001,34:3-10.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700