用户名: 密码: 验证码:
空气锤工作机理的计算机仿真研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文针对目前钻井成本高;深部地层钻速太低;复杂地层、深井井斜突出;水平井加压困难;大尺寸井眼钻速低等问题,综合分析了空气锤在国内外相关应用、发展历史及相关文献,空气锤具有钻压小,转速低,钻孔质量好,井斜和循环漏失小,钻铤数量减少,消除井下复杂而昂贵的钻具组合(BHA),改善钻具受力和钻具磨损,延长钻头寿命,大大地提高机械钻速、很大程度上降低钻井成本和钻井时间,尤其是用空气锤钻大尺寸表层井眼取到很好的经济效益。
     本文研究建立在剖析空气锤类型结构的基础上,着重考虑以下三个方面问题:其一、钻头直接关系到钻井时间和钻井成本,文中详细论述了空气锤钻头的发展历程,分析了空气锤钻头的不同端面设计的优缺点,并分析了平底钻头和增强齿平底钻头的应用效果,这为如何正确的选用空气锤钻头提供了依据。
     其二,运用运动学、动力学、气体动力学、热力学等知识建立了空气锤的数学模型:即气体状态方程、气体能量平衡微分方程、气体流动方程、气体绝热方程,并对其性能参数的数学表达式进行了推导。通过分析空气锤工作机理的基础上假设了仿真条件,运用差分有限原理对空气锤的内部运动过程进行计算机仿真,以数据表的形式可清楚看到每一微段运动参数及气体状态参数的计算结果,绘制了压力时间曲线、速度时间曲线、速度位移曲线、时间位移曲线,这些曲线揭示了空气锤的内部动力过程。空气锤最终的工作性能参数须由计算机计算往复运动若干个周期,待计算结果趋于稳定后输出了包括了空气锤全部工作性能参数的计算结果:周期、单次冲击能、冲击频率、冲击末速度、活塞实际行程、冲击功率、耗气量和有效热功率。
     最后主要讨论了空气锤的参数对性能的影响。空气锤的工作参数与许多因素有关,如气源压力、活塞质量、背压、配气行程、结构行程、前后气室面积、前后气室长度、前后气室进出口面积。由于文章篇幅的限制,仅列出了气源压力、背压对空气锤工作参数的影响规律。
To drilling costs at present being with high, the deep and complicated-formation well's ROP being with low and being aptly to produce deviation problem ,the high WOB problem of horizontal well and large-diameter surface hole etc, the paper comprehensively analyses the application prospect, development and the relevant literature of the DTH hammer at home and abroad. Because the DTH hammer has. the advantages such as the lower RPM, the lower WOB, controlling deviation easier, and the littler quantity of the circulation leakage and the drill collar, it avoids the complex and costly combination of BHA, and it reduce cyclic stresses and wear, widely improve the ROP and reduce the drilling time and costs, especially in the surface of the large-diameter well.
    Through analyzing the DTH hammer structure, the paper emphasizes the following three questions: firstly, the bit impacts the drilling time and costs directly, and the paper discusses the development and history of the bit particularly, analyses the advantage and disadvantage of different end shapes of the bit and analyses flat-bottomed bit and how to improve the application effect of roller flat-bottomed bit. It gives the theory basis for the way how to select DTH hammer bit.
    Secondly, according to the principle of the kinematics, dynamics, gas dynamics and thermodynamics, the paper sets up the mathematics and dynamics modal, which includes gases equation, gasses energy balance differential equation, gas flow equation, gasses adiabatic equation and the deducing of the performance parameter of mathematical expression, for the purpose to describe the working process of the DTH hammer. It suppose the emulational condition through analyzing the principle of the DTH hammer, emulates the working process of the DTH hammer according to difference finitude theory, and draws the pressure-time curve, velocity-time curve, velocity-displacement curve and time-displacement curve which indicate the inside motivity process of the DTH hammer. The computer computes the final performance parameter of the DTH hammer according to the DTH hammer recipating several cycling and the results tending to stabilization, and outputs the results which includes the periods, single impact energy, impact frequance, impact velocity, piston's journey, impact power, gas-consuming and available thermal power.
    Finaly, the paper discusses the performance of the DTH hammer is influenced by its performance parameter which is related with many factors such as air supply pressure, piston mass, back pressure, distribution journey, structure journey, fore-and-aft gas cell area, fore-and-aft gas cell longness and fore-and-aft gas cell entrance area etc. Owing to spatial confined, the paper enumerates air supply pressure and backpressure which influence the working parameter of the DTH hammer only.
引文
1. Pratt C A. Modification to and Experience WithAir-Percussion Drilling, SPE 16166
    2. Whiteley M C. Air Drilling Operations by Percussion Bit/Hammer Tool Tandem, SPE 13429
    3. Johns R P. Hammer Bits Control Deviation in Crooked Hole Country, SPE 18659
    4. Reindvold. Diamond-Enhanced Hammer Bits Reduce Cost per Foot in the Arkoma and Application Basins, SPE 17185
    5. John Meyers. Air hammers cut Barnett Shale drilling time in half, World oil 2004
    6. Sheffield;J.S., Air Drilling Practices in the Mid-continent and Rocky Mountain Areas, SPE 13490
    7. Russell.B.A., How surface Hole Drilling Performance Was improved 65%, SPE 25766
    8. Robello Samuel,G., Purcussing Drilling...Is It a lost Technique? A Review, SPE 35240
    9.蒋荣庆等,潜孔锤钻进应用拓宽前景
    10.杨日平等,潜孔冲击器是最佳的钻进方式,凿岩机械气动工具,1998.3
    11.郑秀华等,一种潜孔锤钻进系统,西部探矿工程,2002.5
    12.林元华;冲击回转钻井,西南石油学院博士论文
    13.何宜章:潜孔锤技术及其国内市场分析,岩石钻凿工程,2000:(5)
    14.蒋德全:潜孔锤钻进—钻进方式的最佳选择,岩石钻凿工程,1994;(6)
    15. De Chastolain A G G.The use of the hammer drill in the foothill, SPE 74
    16. Bui H D. Introduction of steerable percussion air drilling system, SPE 38582
    17. William,Boyun Guo,Frank. air and gas drilling manual
    18.蒋荣庆、殷昆等,潜孔锤在复杂地层中的应用,世界与勘探,1999:(11)
    19.鞍钢矿山研究所,国外潜孔风动冲击器,冶金工业出版社,1980.5
    20.孟英峰等;国内外欠平衡钻井调研报告
    21.杜祥麟等,潜孔锤钻进技术,地质出版社,1988:(10)
    22.蒋荣庆、殷昆等,潜孔锤钻进理论与实践的新进展,探矿工程,2001:(增刊)
    23.殷昆、蒋荣庆等,气动潜孔锤钻进技术,世界地质,1999;(6)
    24.蒋荣庆、殷昆等,长距离水平工程孔施工工艺实验研究,水文地质工程地质,2001;(4)
    25.陈修星等,复杂地层双介质循环系统钻进工艺理论探讨,探矿工程,2001;(6)
    26.蒋荣庆、殷昆等,气动贯通式潜孔锤反循环连续取心(样)钻具系统研制及使用效果,地质与勘探,1996.5
    27.彭视明等,提高复杂地层金矿勘探效果的新技术,黄金,2001.4
    28.吴小建等,岩溶第七水文水井钻进探讨,西部探矿工程,2000.7
    29.蒋荣庆、殷昆等,潜孔锤反循环钻进技术及应用,探矿工程,1996;(5)
    30.谈耀麟,潜孔锤钻进技术发展水平
    31.校月钿,张勇,蒋荣庆等,泡沫潜孔锤室内实验研究,地质与勘探,2002;(5)
    32.校月钿,张勇,蒋荣庆等,-295型泡沫潜孔锤简介,地质与勘探,2001;(10)
    33.菅志军,张祖培等,泡沫潜孔锤在水文水井钻探中的应用前景,地质与勘探,2001:(9)
    34.Ian Clarke,潜孔锤扩大影响进入广阔的市场,非开挖技术,2003.8
    35.潜孔锤导向钻井技术
    36.耿瑞伦等、多工艺空气钻探、地质出版社、1995.10
    37.前长春地质学院探工系编、多工艺空气钻探技术、1987.10
    38.李世忠,勘探工程技术,上海科技技术出版社,2003.12
    39.耿瑞伦,冯国强液动锤技术及其应用前景探矿工程(岩土钻掘工程) 2001年第1期
    40.苏长寿,液动潜孔锤技术现状及发展设想,探矿工程,2003.1
    41.勘探孔空气钻进,地质出版社
    42.空气锤研制及应用技术,中国石油勘探开发研究院机械所
    43.殷昆、蒋荣庆等,气动潜孔锤钻进技术,世界地质,1999.6
    44.张国忠等、气动冲击设备及设计、机械出版社、1989.12
    45.马克新等,QD-70型气动潜孔锤配气参数的优化设计,煤矿机械,1998.12
    46.徐小荷等、冲击凿岩理论基础与电算方法、东北工学院出版社、1986.8
    47. Johns T F. Investigation of Percussion Drills for Geothermal Applications. SPE 10238
    48.ChuckWin,震击钻头高空钻井能提高钻速效果(译自美国际石油工程师,1990.5)
    49.Mildren.,D,雷恒仁译,潜孔锤钻头的选择.岩石钻凿工程,1996
    50. Sneddon M V. Recent Advances in Polycrystalline Diamond (PDC) Technology Open New Frontiers in Drilling. SPE 17007
    51. Weller T F. Diamond-Enhanced Hammer Bits Reduce Cost per Foot and Directional Problem in Southwestern Pennsylvania Oriskany Wells. SPE 19335
    52. Tetley, N.P., Application of Diamond-Enhanced Insert Bits in Underbalanced Drilling, SPE 56877
    53.赵统武、冲击钻进动力学、冶金工业出版社、1996.10
    54.郑令仪等,工程热力学,国防工业出版社,1983.11
    55.雄青山等,可视化气动潜孔锤设计软件系统的开发
    56.张国忠、潜孔冲击器结构设计方法及参数选择、凿岩机械与风动工具、1981(3)
    57.张海涛,大直径潜孔冲击器设计与制造,凿岩机械气动工具,2000.3
    58.陈纪修等、数值分析、高等教育出版社、1999.
    59.张志兵、气动冲击锤的计算机模拟研究、中南大学博士论文、2001.3
    60.雄青山等,可视化无阀式风动潜孔锤仿真电算软件设计
    61.吴师通、VB实用编程百例、清华大学出版社、2000.5
    62.雄青山等,潜孔锤结构参数优化.遍历法,西部探矿工程,2004.5
    63.孙国强等,内回转式凿岩机结构最优化,东北工学院学报,1991.8
    64.王茂森、殷昆等,GC-100型低压高能潜孔锤的研制与应用,西部探矿工程,2000.2

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700