用户名: 密码: 验证码:
主动多激励结构健康监测系统的研制与应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
结构健康监测是设备状态监测和故障诊断的基础,而智能材料与结构的应用是进行结构健康监测的重点。压电陶瓷能与基体材料很好结合,具有制备容易、耐热、耐湿、强度高、频响宽等特点,另外它具有正压电效应和逆压电效应,即当它受到机械力变形时,能产生电势,对它施加电压时,能改变其机械尺寸,因此它在智能材料结构中既能用作传感元件又能用作驱动元件。与其它压电陶瓷相比,锆钛酸压电陶瓷(PZT)有较好的机电耦合系数、压电常数、机械品质因数、居里温度和稳定性等,因此,PZT能广泛应用于智能材料结构中。
     本文研究的目的在于开发一个主动的健康监测系统,用压电激励器和传感器的嵌入网络诊断技术,来检测各向同性板中损伤的位置和尺寸。主动监测系统的基本思想是:采用驱动器在复合材料表面激发主动监测信号,与此同时传感器在同一表面的其他一个或多个地方接收结构响应信号,并对信号进行分析,据此对结构中的损伤进行监测。多激励是指用多个压电陶瓷做为激励源,而且每一个压电陶瓷都可以同时作为激励和响应,可以轮换使用,因此是多点激励,多点响应。多激励监测系统具有以下特点:灵活方便、损伤的定位准确度高,可以进行多点测量,反复定位。因此利用PZT进行做多激励结构健康监测有广阔的应用前景。
     本文对主动多激励结构健康监测系统进行了应用,对压电陶瓷应用于结构健康监测的原理进行了深入的研究,确定压电陶瓷尺寸和频率的对应关系,确定压电陶瓷的极化方式和电极引出方式。对铝板,复合材料板,支架结构进行了无损伤情况下的试验。对于无损伤情况,利用本系统对铝板结构使用四个传感器进行损伤前不同频率下信号的采集,验证了主动多激励方案的可行性。进行了损伤识别的简单试验,用同一个传感器采集损伤前后的信号,用信号的差异来表征损伤。求出对损伤比较敏感的参数—群速度;群速度的求取可以直接得出铝板的群速度色散曲线,从而把拉姆波分成S0和A0两种模式,S0模式用来检测金属结构表面的裂纹扩展,A0模式对监测复合材料的分层十分有效;由同一块板损伤前后的响应信号,求出了反映损伤的散射波,完成对损伤程度的识别。
Structure Health Monitoring is the base of equipment status monitoring and failure diagnosing. Application of smart materials and structure is the main point of Structure Health Monitoring. Smart materials and structure have definite requirements of sensor components and driving components, for example, they can adhere well to the matrix and have higher strength, fatigue strength, more broad scope of frequency response and faster response speed, etc. Piezodielectric ceramics have characteristic of easily preparing, heat-resistance, wet-resistance, high strength and broad scope of frequency response, etc. Furthermore, it has piezoelectric effect and inverse piezoelectric effect, namely it can produce electric potential energy when it is transformed by mechanical strength and its mechanical dimension can be transformed when voltage is put on it. So it can be used as both sensor component and driving component. PZT have better electromechanical coupling coefficient, piezoelectric constant, mechanical quality factor, curie temperature and stability, etc. So, PZT can be used widely in smart materials and structure.
     Researches in this thesis aim to develop active Health Monitoring technology and use a diagnostic technique based on a built-in network of piezoelectric actuators and sensors was proposed for detecting the location and size of an damage in isotropic- plates. The ideas of Active Health Monitoring System are that use drives to activate signals of Active Health Monitoring and sensors on another place or other places mounted on the same surface to recieve response signals of structure simultaneously and analyze signals which are the base of analyzing damages in the structure. Multiple activation is that several piezodielectric ceramics are used as excitation sources, the neighboring piezoelectric discs used as sensors to record the propagating waves, and one piezodielectric ceramic act as both excitation source and response source, which can be used alternatively to form multipoint excitations and multipoint responses. So they have these characteristics which are agile, convenient, high veracity of locating damages and can be used to proceed multipoint measure and locate repeatedly. So it has wide application foreground to use PZT to conduct Health
引文
1 谢强,薛松涛. 土木工程结构健康监测的研究现状与进展. 中国科学基金. 2001, (5):285~288
    2 王磊,袁慎芳. Kohonen 神经网络在复合材料损伤主动监测技术中的应用. 材料科学与工程. 2002,20(4):513~516
    3 Tierang Liu, Martin Veidt and Sritawat Kitipornchai. Modelling the Input–Output Behaviour of Piezoelectric Structural Health Monitoring Systems for Composite Plates. Smart Mater. Struct. 2003,(12):836~844
    4 吴斌,郑璟瑜,何存富,王智. 采用 PZT 传感器激励和接收超声导波. 北京工业大学学报. 2003,29(1):1~4
    5 Iwaki Hideaki, Shiba Keiji, Takeda Nobuo. Structural Health Monitoring System Using FBG-Based Sensors for a Damage Tolerant Building. Proceedings of SPIE. 2003, 5057:392~399
    6 Habel. W, Hofmann. D, Kohlhoff. H et al. Complex Measurement System for Long-Term Monitoring of Pretressed Railways Bridges in the New “Lehrter Bahnhof” in Berlin. Proceedings of SPIE. 2002, 4694:236~241
    7 Whelan Maurice P, Albrecht Daniel, Capsoni Antonio. Remote Structural Monitoring of the Cathedral of Como using an Optical Fibre Bragg Sensor System. Proceedings of SPIE. 2002,4694:242~252
    8 Robert L. Yuan, Mark Bourland, Eduardo Ugarteet. Health Monitoring of Light-Rail Aerial-Structural System. Proceedings of SPIE. 2002, 4702:262~271
    9 K. Diamanti, J. M. Hodgkinson and C. Soutis. Detection of Low-velocity Impact Damage in Composite Plates using Lamb Waves. Structural Health Monitoring. 2004, 3(1):33~41
    10 Calvin S. Wang and Fu-Kuo Chang. Diagnosis of Impact Damage in Composite Structures with Built-in Piezoelectrics Network. Proceedings of SPIE. 2000, 3990:1~9
    11 Jeong-Beom Ihn and Fu-Kuo Chang. Detection and Monitoring of Hidden Fatigue Crack Growth Using a Built-in Piezoelectric Sensor/Actuator Network: I. Diagnostics. Smart Mater. Struct. 2004, (13):609~620
    12 Jeong-Beom Ihn and Fu-Kuo Chang. Detection and Monitoring of Hidden Fatigue Crack Growth Using a Built-in Piezoelectric Sensor/Actuator Network: II. Validation using Riveted Joints and Repair Patches. Smart Mater. Struct. 2004, (13):621~630
    13 Chun H. Wang, James T. Rose and Fu-Kuo Chang. A Computerized Time-Reversal Method for Structural Health Monitoring. Proceedings of SPIE. 2003, 5046:48~58
    14 Jinkyu Yang, Fu-Kuo Chang, and Mark M. Derriso. Design of a Built-In Health Monitoring System for Bolted Thermal Protection Panels. Proceedings of SPIE. 2003, 5046:59~70
    15 Mark Lin, Amrita Kumar, Xinlin Qing, Shawn J. Beard. Advances in Utilization of Structurally Integrated Sensor Networks For Health Monitoring in Commercial Applications. Proceedings of SPIE. 2002,4701:167~176
    16 Wang, Calvin S., Chang, Fu-Kuo. Diagnosis of Impact Damage in Composite Structures with Built-in Piezoelectrics Network. American Society of Mechanical Engineers. 2000,60:367~373
    17 C.S. Wang and F.-K. Chang. Built-In Diagnostics for Impact Damage Identification of Composite Structure. Proceedings of the 3rd international Workshop on Structural Health Monitoring. Stanford. U.S.A. 1999: 612~621
    18 Park G et al. Impedance Based Structural Health Monitoring for Varying Applications. JSME Int Jonurnal. 1999, series A, 42 (2): 249~258
    19 Jeong-Beom Ihn and Fu-Kuo Chang. Multi-Crack Growth Monitoring at Riveted Lap Joints Using Piezoelectric Patches. Proceedings of SPIE. 2002,4702: 29~40
    20 Daniele Inaudi, A. Ruefenacht, B. von Arx, et al. Monitoring of a concrete arch bridge during construction. Proceedings of SPIE. 2002, 4696:146~153
    21 Daniele Inaudi. Development of Reusable Software Components for Monitoring Data Management, Visualization, and Analysis. Proceedings of SPIE. 2002, 4696:10~16
    22 王磊,袁慎芳,朱安华. 基于主动监测技术的蜂窝夹芯结构损伤监测研究. 仪器仪表学报. 2002,23(4):404~407
    23 周晚林, 王鑫伟,袁慎芳. 基于主动监测系统的 AR 模型谱分析方法. 力学与实验. 2003,25:48~50
    24 袁慎芳, 陶宝祺, 朱晓荣, 石立华. 应用小波分析及主动监测技术的复合材料损伤监测. 材料工程. 2001,(2):43~46
    25 Andrein. Zagral and Victor Giurgiutiu. Electro-Mechanical Impedance Method for Crack Detection in thin Wall Structures. In Proc. of the 3td inter. work shop on structural Health Monitoring, Stanford: CRC Press. 2001, 176~186
    26 Scott W. Doebling, Charies R. Farrar, Michael B. Prime, Daniel W. Shevitz. Damage Identification and Health Monitoring of Structural and Mechanical Systems from Changes in Their Vibration Characteristics: A Literature Review. Los Alamos National Laboratory. 1996:63~88
    27 Wang X M , Ehlers C, N eitzelM. Investigation on the Dynamic Actuation of Piezoelectric Patches Bonded on a Beam. In Proc. of the Seventh International Conference on A daptive Structures. Rome, Italy. 1996:425~434
    28 Vary A. The Acousto-Ultrasonic App roach, Acousto-Ultrasonic: Theory and Application. New York: Plenum Press. 1988, 1~22
    29 Tang B, Henneke. E G. Lamb-Wave Monitoring of Axial Stiffness Reduction of Laminated Composite Plates. Materials Evaluation. 1989, 47 (8): 928~933
    30 D. N. Alleyne, p. Cawley. The Interaction of Lamb Waves with Defects. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control. 1992: 381~397
    31 Emmanuel Moulin et al. Piezoelectric Transduce Embedded in a Composite plate: Application to Lamb Wave Generation. J. App l. Phys, 1997, 82 (5) : 2049~2055
    32 Eric Blaise, Fu-Kuo Chang. Built-in Damage Detection System for Sandwich Structures Under Cryogenic Temperatures. Proceedings of SPIE. 2002, 4701:97~107
    33 周晚林, 王鑫伟. Lamb 波理论及层合板冲击损伤的实验研究. 实验力学. 2004,19(2):211~216
    34 Hisao Fukunaga, Ning Hu, Fu-Kuo Chang. Structural Damage Identification Using Piezoelectric Sensors. International Journal of Solids and Structures. 2002, 39:393~418
    35 徐颖娣, 袁慎芳, 彭鸽. 二维结构损伤的主动 Lamb 波定位技术研究. 航空学报. 2004, 25(5):476~479
    36 彭鸽,袁慎芳,徐颖娣. 基于主动 Lamb 波和小波变换的二维结构损伤定位研究. 振动工程学报. 2004,17(4):490~493
    37 Z. Chang, A. Mal. Scattering of Lamb waves from a Rivet Hole with Edge Cracks. Mechanics of Materials. 1999,31(3): 197~204
    38 Seth S Kessler, S Mark Spearing and Constantinos Soutis. Damage Detection in Composite Materials Using Lamb Wave Methods. Smart Mater. Struct. 2002,(11):269~278
    39 郭谆钦,杨拥民,杨光瑜. 基于 PZT 的故障监测技术研究. 自动检测技术. 2002,21(5):49~51
    40 唐守锋,熊克,梁大开,李东升. 用于结构健康监测的智能夹层研究进展. 实验力学. 2005,20(2):226~234
    41 刘镇清. 超声无损检测中的导波技术. 无损检测, 1999, 2 (18):367~375
    42 Mark Lin, Xinlin Qing, Amrita Kumar, Shawn J. Beard. Smart Layer and Smart Suitcase for Structural Health Monitoring Applications. Proceedings of SPIE. 2001,4332:98~106
    43 Fan Wu and Fou-Kou Chang. A Built-in Active Sensing Diagnostic System for Civil Infrastructure Systems. Proceedings of SPIE. 2001,4330:27~35
    44 X Lin and F G Yuan. Diagnostic Lamb Waves in an Integrated Piezoelectric Sensor/Actuator Plate: Analytical and Experimental Studies. Smart Mater. Struct. 2001,(10):907~913
    45 Calvin S. Wang and Fu-Kuo Chang. Diagnosis of Impact Damage in Composite Structures with Built-in Piezoelectrics Network. Proceedings of SPIE. 2000,3990:13~19
    46 Y. S. Roh. Built in diagnostics for identifying an anomaly in plates using wave scattering. A Dissertation of Stanford University for the Degree of Doctor of Philosophy. 1998:14~20.
    47 吴斌,郑璟瑜,何存富,王智. 采用 PZT 传感器激励和接收超声导波. 北京工业大学学报. 2003,29(1):1~4
    48 石荣,陈伟民,朱永,封君,龙辉敏. 采用压电片阵列传感进行损伤监测的研究. 2000.22(4):277~280
    49 林 玉 书 . 压 电 陶 瓷 薄 圆 片 振 子 的 厚 度 剪 切 振 动 . 压 电 与 声 光 . 1994,16(2):33~41
    50 G. Yan, Lily L. Zhou and F. G. Yuan. Wavelet-Based Built-In DamageDetection and Identification for Composites. Proceedings of SPIE. 2005,5765:324~334
    51 袁慎芳,陶宝祺,石立华. 测控技术在智能材料结构研究中的应用. 测控技术. 1998,17(6):1~4
    52 赵霞, 袁慎芳, 王帮峰. 用于结构健康监测的实时 DSP 数据采集及小波分析模块. 测控技术. 2003,22(4):16~20.
    53 徐芳,魏全忠,伍凡 . 功率谱密度函数评价方法探讨 . 光学仪器 . 2000,22(3):21~24

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700