用户名: 密码: 验证码:
钠离子电池正极材料NaVPO_4F及其掺杂化合物的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
锂离子电池现在已经成为便携式电子装备的动力源泉,例如:手机,可携式摄像机,手提式电脑。如果能开发出具有更好的电化学性能的钠离子电池,相对于锂离子电池来说,它将有更多的优势,如它能明显地降低原材料的成本和能采用分解电压更低的电解液(由于钠离子的半电池电位相对于锂离子要高)。因此,钠离子电池将是一种有前景的新型电池。
     本论文报道了在氩气保护下用两段高温固相反应法制备NaVPO_4F作为钠离子电池正极材料,并用傅立叶红外光谱(FT-IR),原子吸收(AAS),热重分析(TG/DTG),X-射线衍射(XRD),扫描电镜(SEM),恒流充放电,循环伏安,交流阻抗等对其结构和性能进行了测试和表征。结果表明:600℃左右反应可以获得稳定的、结晶性好的NaVPO_4F,其晶型为简单单斜晶系,与前驱体VPO4的晶型一致。SEM测试表明NaVPO_4F的粒径分布均匀,粒径大小在微米级,材料首次放电容量为87mAh/g。循环伏安曲线中有两对氧化还原峰,和充放电曲线上出现的两个平台一致。
     但是NaVPO_4F在30个充放电循环后的放电容量仅为首次的50%,因此要通过修饰和掺杂技术来提高它的性能。本论文通过高温固相法合成了NaVPO_4F,同时掺杂Cr元素得到了NaV_(1-x)Cr_xPO_4F(x=0-0.1)。红外光谱表明掺杂Cr后的材料吸收振动峰增强,Cr掺入越多,峰越往高波数方向移动,说明掺杂Cr可增强V-O键强度,掺杂Cr使材料的晶胞发生收缩,因此由于掺杂Cr元素,材料结构稳定性增加,循环稳定性能更好。X射线衍射证实了直到x=0.08时少量Cr的掺杂不影响它的晶体结构,没有杂相存在,Cr成功地取代了V位得到了单相固溶体,掺杂Cr的量越多,吸收峰越锐利,峰强度越大,说明材料结晶性能越好,电化学循环过程中循环稳定性能越好。掺杂不同量Cr的正极材料放电比容量均在80mAh/g左右。掺入Cr后的材料电化学循环稳定性得到较好的改善,首次放电容量能达到83.3mAh/g,效率高达90.3%,而且循环20次后可逆容量保持率仍然有91.4%。当掺杂Cr的量增加时,可逆容量降低,库仑效率增加,其中NaV_(0.96)Cr_(0.04)PO_4F和NaV_(0.92)Cr_(0.08)PO_4F的可逆容量损失分别为12.5mAh/g和7.6mAh/g,容量保持率分别为82.2%和91.4%。
     本论文采用高温固相法制备了NaVPO_4F和LiVPO_4F,分别以这两种活性物质作为钠离子电池和锂离子电池的正极材料,制备了二次电池。结果表明,在充放电曲线上都出现两个平台,首次放电容量分别为87mAh/g和100mAh/g,20次后可逆放电比容量分别有64.5mAh/g和86mAh/g,与首次相比其容量损失分别达22.9mAh/g和14mAh/g,容量保持率分别为73.5%和86%。
Lithium-ion rechargeable batteries are now well established as power sources for portable electronic equipments such as cellular phone, camcorder and laptop computer. If sodium-ion rechargeable batteries with good performance characteristics could be developed, it would have some significant advantages over lithium-ion batteries, notably a reduction in raw materials cost and the ability to utilize electrolyte systems of lower decomposition potential (due to the higher half-reaction potential for sodium relative to lithium). So, sodium-ion batteries will be a kind of promising novel batteries.
     In this thesis, the cathode materials of sodium-ion battery, NaVPO_4F, were prepared under the protection of argon atmosphere by two step high temperature solid-state methods. The structure and performance of the prepared cathode material was characterized by Flourier-Infrared Spectra (FT-IR), Atomic Absorption Spectra (AAS), Thermogravimetric Analysis(TG/DTG), X-ray Diffractometer (XRD) , Scanning Electron Microscope (SEM), the galvanostatic charge/discharge, Cyclic voltammograms (CVs) and Electrochemical Impedance Spectroscopy(EIS). The results showed that NaVPO_4F with a good crystal stability can be obtained about a temperature of 600℃. Its crystal system was monoclinic, and it was in accord with VPO4 precursor. The SEM micrograph showed that the size of NaVPO_4F is micron-class, and the distribution of particle was uniform, The first charge and discharge capacity of material was 87mAh/g。The cyclic voltammogram showed two couples of peaks in cathodic sweep and anodic sweep. It agreeed well with the two voltage plateaus of the curve of the charge/discharge curves for NaVPO_4F.
     However, the discharge capacity of NaVPO_4F was declined to less than by 50% of its initial discharge capacity after 30 charge/discharge cycles. In this thesis, NaVPO_4F were synthesized with a high temperature solid state reaction, and Cr was doped into this material to prepare NaV_(1-x)Cr_xPO_4F(x=0-0.1) powders. In the FT-IR spectrum of Cr doped materials, it was observed that the absorbance of peak increased comparing to the un-doped materials, and the band peak was moving to higher wave numbers as the doped amount of Cr increase. So, it explained that the strength of V-O band increased with the doped Cr, and the crystal cell shrunk. So that, it could be expected that the stability of materials would be enhanced and the cycle performance would be better with the introduction of Cr. The XRD results clearly confirmed that Cr substitution for V sites was successful and the single-phase solid solution was formed
引文
[1]J.Barker, M.Y.Saidi, J.Swoyer. sodium ions batteries[P].U.S. Pat. 6,387,568(2002).
    [2]郭炳焜,徐微,王先友,等.锂离子电池[M].长沙:中南大学出版社,2002:34-36.
    [3]P.Ge, M.Fouletier. Electrochemical intercalation of sodium in graphite [J].Solid State Ionics,1988, 28-30:1172.
    [4]I.A.Udod, H.B.Orman, U.K.Genchel. The Sodium graphite system under high pressure conditions: The comparison with the lithium-graphite system [J].Carbon, 1994, 32:101.
    [5]M.M.Doeff, Y. M., SJ.Visco, L.C.Dejonghe, Electrochemical insertion of sodium into carbon[J]. J.Electrochem.Soc. 1993, 140, L169- L170.
    [6]M.Dubois, D.Billaud. Solid state electrochemical intercalation of lithium and sodium ions into polyparaphenylene[J]. J.Solid State Chem., 1995, 127(1):123-125.
    [7]L.Joncourt, M.Mermoux, PH.Touzain, et al. Sodium reactivity with carbons[J].J.phys.Chem.Solids,1996,57:877-882.
    [8]P. Thomas, J. Ghanbaja, D. Billaud. Electrochemical insertion of sodium in pitch-based carbon fibres in comparison with graphite in NaClO4-ethylene carbonate electrolyte[J].Electrochim. Acta, 1999,45:423.
    [9]P. Thomas, and D. Billaud, Effect of mechanical grinding of pitch-based carbon fibers and graphite on their electrochemical sodium insertion properties[J].Electrochim. Acta,2000,46(1): 39-47.
    [10]R.Alcantara, F.J.Fernandez, P.Lavela.et al. Cheracterisation of mesocarbon microbeads(MCMB) as active electeode material in lithium and sodium cells[J].Carbon,2000,38:1031-1041.
    [11]R.Alcantra,J.M.J-Metaeos,P.Lavela,etal.Carbon black:apromising electrode material for sodium-ion batteries[J]. Electrocehmistry Communication, 2001, 3:639.
    [12]P. Thomas, D. Billaud. Sodium electrochemical insertion mechanisms in various carbon fibres[J]. Electrochimica Acta, 2001, 46 (22):3359-3366.
    [13]D. A. Stevens, J. R. Dahn. High capacity anode materials for rechargeable sodium-ion batteries[J]. J.Electrochemical Soc, 2000,147:1271.
    [14]E.Zheacheva, R.Stoyanova,J.M.Jimenez-Mateos,et al.EPR Study on petroleum cokes and used in lithium and sodium batteries[J].Carbon,2002,40:2301-2306.
    [15]R.Alcantara, J.M.Jimenez Mateos, J.L.Tirado. Negative electrodes for lithium- and sodium-ion batteries obtained by heat- treatment of petroleum cokes below 1000 ℃[J].J Electrochemical Soc, 2002, 149(2): A201-A205.
    [16]P.Thomas, D.Billaud. Electrochemical insertion of sodium into hard carbons[J].2002,47:3303-3307.
    [17]R.Alcantara, M.Jaraba, P.Lavela, et al.NiCo2O4 spinel: First report on a transition metal oxide for the negative electrode of sodium-ion batteries[J].Chem.Mater,2002,14:2847-2848.
    [18]R. J. Balsys, R. L. Davisb, Refinement of the structure of Na0.74CoO2 using neutron powder diffraction[J].Solid State Ionics1996, 93:279-282.
    [19]Claude Delmas, Jean-Jacques Braconnier, Claude Fouassier, et al. Electrochemical intercalation of sodium in NaxCoO2 bronzes[J].Solid State Ionics, 1981,3-4:165-169.
    [20]Yasuhiko Takahashi, Junji Akimoto, Norihito Kijima, et al. Structure and electron density analysis of Na0.74CoO2 by single-crystal X-ray diffraction[J].Solid State Ionics, 2004,172(1-4):505-508.
    [21]Masayuki Tsuda,Hajime Arai,Yasue Nemoto, et al. Electrode performance of sodium and lithium-Type Romanechite[J]. Journal of the Electrochemical Society, 2003,150(6):A659-A664.
    [22]O.I.Velikokhatnyi, C.-C.Chang, P.N.Kumta. Phase stability and electronic structure of NaMnO2[J].Journal of the Electrochemical Society, 2003,150(9):A1262-A1266.
    [23]Masayuki Tsuda, Hajime Arai , Yoji Sakurai. Improved cyclability of Na-birnessite partially substituted by cobalt[J]. Journal of Power Sources, 2002,110(1): 52-56 .
    [24]吴振军,陈宗璋,汤宏伟,等.钠离子电池研究进展[J].电池,2002,32(1):45.
    [25]K.west,B.zachau-christiansen,T.Jacobsen.Sodium insertion in vanadium oxides[J].Solid state Ionics,1988, 28-30(2):1128-1131.
    [26]J. M. Tarascon, D. G. Guyomard, B. Wilkens. et al. Chemical and electrlchemical insertion of Na into the spinel λ-MnO2 phase[J].Solid State Ionics,1992,57(1-2):113-120.
    [27]I.saadoune, A.Maazaz, M.Menetrier. et al. On the NaxNi0.6Co0.4O2 System: Physical and electrochemical studies[J].Journal of Solid State Chemistry,1996,122:111-117.
    [28]L.Sanchez, J.L.Tirado, C.Perez Vicente.et al. Electrochemical Lithium and Sodium intercalation into TaFe1.25Te3[J]. J.solid state Chemistry, 1998, 2: 328-333.
    [29]S. Bach, M. Millet, J. P. Periera-Ramos, et al. Electrochemical sodium insertion into MnCo oxide[J]. Electrochem. Solid-State Lett, 1999, 2 (11):545-546.
    [30]Y.Onoda, S.H.Chung, A.Watanabe, et al. Na-ion motion in Na3-xRu4O9:an NMR Study of Na line shape [J].Solid State Ionics, 2000,136-137:365-370.
    [31]M. M. Doeff,T. J.Richardson, J.Hollingsworth, et al. Synthesis and charecterization of a copper-substitute manganese oxide with the Na0.44MnO2[J] . Journal of power sources, 2002,112:294-297.
    [32]J. Barker, M. Y. Saidi, , J. L. Swoyer. A Sodium-Ion Cell Based on the Fluorophosphate Compound NaVPO4F[J]. Electrochemical and Solid-State Letters,2003,6:A1-A4.
    [33]Y. Uebou, S. Okada , J. Yamaki. Electrochemical insertion of lithium and sodium into (MoO2)2P2O7[J]. J. Power Sources, 2003,115:119 -124.
    [34]J.Barker, M.Y.Saidi, J.L.Swoyer. A comparative investigation of the Li insertion properties of the novel Fluorophosphate phases, NaVPO4F and LiVPO4[J]. J. Electrochemical Soc,2004, 151(10):A1670-A1677.
    [35]J.Meins, M.Crosnier. A.Hemon, et al. Phase transitions in the Na3M2(PO4)2F3 family (M=Al3+,V3+, Cr3+, Fe3+, Ga3+):Synthesis, Thermal, Structural, and Magnetic studies[J].Journal of solid state chemistry,1999,148:260-277.
    [36]E.Alda, B.Bazan, J.L.Mesa, et al. A new vanadium(III) fluorophosphates with ferromagnetic interactions, (NH4)[V(PO4)F] [J].Journal of solid state chemistry,2003,173:101-108.
    [37]卓海涛,王先友等.钠离子电池正极材料的性能研究[C]. 12th全国电化学大会论文集.上海:中国化学会委员会,2003:C180.
    [38]Xianyou Wang ,et al. Preparation of cathodic material of sodium ion battery[C]. International Conference of Solar Energy and Batteries Materials, Cancun, Mexico,2003.
    [39]Xiao-wen Huang, Peng-fei Shi. Studies on Electrochemical Property of LiFePO4/C as Cathode Material for Lithium Ion Batteries [J]. Chemical Research in Chinese Universities, 2006, 22(1):73-75.
    [40]C.H. Mi, G.S. Cao ,X.B. Zhao. Low-cost, one-step process for synthesis of carbon-coated LiFePO4 cathode Materials Letters[J].Materials Letters, 2005,59(1): 127-130.
    [41]Jaephil cho, Hyemin Kim,Byungwoo Park. Comparison of overcharge of AlPO4-coated LiCoO2 and LiNi0.8Co0.1Mn0.1O2 cathode materials in Li-ion cells[J]. Journal of the Electrochemical Society, 2004, 151(10):A1707-A1711.
    [42]Ho-Jin Kweon,Sue Joo Kim,Dong Con Pork.Modification of Lil-xNil-yCoyO2 by applying a surface coating of MgO[J].J.Power Sources, 2000,88:255-261.
    [43]米常焕,曹高劭,赵新兵. 碳包覆LiFePO4的一步固相法制备及高温电化学性能[J].无机化学学报, 2005,2l (4):556-560.
    [44]D.Morgan, G.Ceder, M.Y.Saidi, et al. Experimental and computational study of the structure electrochemical properties of LixM2(PO4)3 compounds with the monoclinic and rhombohedral stucture[J].chem.Mater, 2002,14:4684-4693.
    [45]D.Morgan, G.Ceder, M.Y.Saidi, et al. Experimental and computational study of the structure and electrochemical properties of monoclinic LixM2(PO4)3 compounds[J]. Journal of power sources, 2003, 119-121:755-759.
    [46]郑子山,唐子龙,张中太,沈万慈.铝锂混合掺杂尖晶石相Li1+xAlyMn2-yO4材料结构性能的研究[J].电化学,7(4)(2001),433-438.
    [47]郑子山,唐子龙,张中太,等.掺铬锂电池正极材料Li1+xCryMn2-y-xO4的合成及其结构性能的
    研究[J].硅酸盐学报,2001,29(6):554-558.
    [48]倪江锋, 周恒辉,陈继涛,苏光耀,铬离子掺杂对LiFePO4电化学性能的影响[J].物理化学学报,2004,20(6):582-58.
    [49]夏君磊,赵世玺,刘韩星,等.S-Co复合掺杂LiMn204的合成与性能[J].无机材料学报, 2003,18(4): 942-946.
    [50]李建刚,万春荣,杨冬平,等. LiNi3/8Co2/8Mn3/802正极材料氟掺杂改性研究[J].无机材料学报, 2004,19(6):1298-1305.
    [51]阮艳莉,唐致远,Mg2+掺杂对LiFePO4结构及电化学性能的影响[J].中国有色金属学报, 2005,15(9):1416-1420
    [52]A.G. Ritchie.Recent developments and likely advances in lithium rechargeable batteries[J].Journal of Power Sources, 2004,136: 285-289.
    [53]郭炳焜,徐微,王先友,等.锂离子电池[M].长沙:中南大学出版社,2002: 7-9.
    [54]A.J.巴德 , L.R.福克纳 . 电化学方法、原理及应用 [M].北京 :化学工业出版社 , 1984: 372-406.
    [55]田绍武著,电化学研究方法[M].北京:科学出版社, 1984: 230.
    [56]M.M.Doeff, Y.Ferry, Y.Ma, et al. Effect of electrolyte composition on the performance of sodium/polymer cells[J].J.Electrochem.Soc. 1997, 144(2):L20-L22.
    [57]J.Barker, M.Y.Saidi. lithium-containing phosphates, method of preparation, and use thereof [P], U.S.Pat. 5,871,866(1999).
    [58]K. Kanamura, S. Toriyama, S. Shiraishi, et al. Studies on electrochemicaloxidation of nonaqueous electrolytes using in situ FTIR spectroscopy I. The effect of type of electrode on on-set potential for electrochemical oxidation of propylenecarbonate containing 1.0 mol·dm-3 LiClO4[J].Journal of the Electrochemical Society, 1995, 142(5): 1383-1389.
    [59]A. Blyr, C. Sigala, G. Amatucci, et al. Self-discharge of LiMn2O4/C Li-ioncells in their discharged state. Understanding by means of three-electrode measurements[J]. Journal of the Electrochemical Society, 1998, 145(1): 194-209
    [60]叶世海,吕江英,高学平,宋德瑛.球磨促进高温固相反应合成尖晶石相 LiMn2O4[J]. 电源技术,2002,26(2):151-153
    [61]苏勉曾, 谢高阳, 申泮文等译.West A R.固体化学及其应用[M].上海:复旦大学出版社, 1989.
    [62]徐如人,庞文琴. 无机合成与制备化学[M]. 北京:高等教育出版社,2001.
    [63]日本化学会编.无机固态反应[M]. 董万堂, 董绍俊译. 北京:科学出版社,1985.
    [64]闻辂主编.矿物红外光谱学[M].重庆:重庆大学出版社,1989: 65-68.
    [65]S.C.Lin, J.T.Vaughey, W.T.A.Harrison,et al. Redox transformations of simple vanadium phosphates: the synthesis of ε-VOPO4[J].Solid state ionics, 1996,84:219-226.
    [66]Wen-Sheng Dong, Jonathan K. Bartley, Nian-Xue Song, et al. Synthesis and Characterization
    of Vanadyl Hydrogen Phosphite Hydrate [J]. Chem.Mater, 2005, 17:2757-2764.
    [67]拉宾诺维奇 B A 等. 简明化学手册[M]. 超星数字图书室,1983: 89.
    [68]S.-T.Myung, S.Komaba, N.Hirosaki, et al. Emulsion drying preparation of layered LiMnxCr1?xO2 solid solution and its application to Li-ion battery cathode material[J]. J.Power Sources, 2003,119-121:211-215.
    [69]S.-T.Myung, S.Komaba, K.Hosoya, et al. Synthesis of LiNi Mn Ti O by an Emulsion Drying Method and Effect of Ti on Structure and Electrochemical Properties0.5 0.5-x x 2[J]. Chem.Mater. 2005, 17(9):2427-2435
    [70]Haitao zhuo, Xianyou Wang, et al. The preparation of NaV1-xCrxPO4F cathode materials for sodium-ion battery[J]. Journal of Power Source, 2006(in press).
    [71]徐峙晖,赖琼钰,吉晓洋.用碳热还原法合成LiFePO4及其电化学性能研究[J]. 四川大学学报(工程科学版), 2005,37(4):77-80.
    [72]J.Barker, M.Y.Saidi, J.L.Swoyer. Electrochemical properties of beta-LiOPO4 prepared by carbothermal reducion[J]. Journal of the Electrochemical Society, 2004,151(6):A796-A800.
    [73]J.Barker, M.Y.Saidi, J.L.Swoyer. Carbothermal reduction method for the preparation of electroactive materials for lithium ion application[J]. Journal of the Electrochemical Society, 2003,150(6):A684-A688.
    [74]A.K.Padhi, K.S.Nanjundaswamy, C.Masquelier, et al.Mapping of Transition Metal Redox Energies in Phosphates with NASICON Structure by Lithium Intercalation[J].J. Electrochem.Soc., 1997,144:2581-2586.
    [75]K. Zaghib, K. Striebel, A. Guerfi, et al. LiFePO4/polymer/natural graphite: low cost Li-ion batteries[J].Electrochimica Acta, 2004,50(2-3):263-270.
    [76]Daniela Zane, Maria Carewska, Silvera Scaccia, et al.Factor affecting rate performance of undoped LiFePO4 [J]. Electrochimica Acta, 2004, 49(25): 4259-4271.
    [77]Sang Jun Kwon, Cheol Woo Kim, Woon Tae Jeong, et al. Synthesis and electrochemical properties of olivine LiFePO4 as a cathode material prepared by mechanical alloying [J]. Journal of Power Sources, 2004,137(1):93-99.
    [78]Th.Loiseau, Y.Calage, P.Lacorre, et al. NH4FePO4F: Structural Study and Magnetic Properties[J], J.solid state Chem., 1994,111(2):390-396.
    [79]J.-M.Le Meins, O.Bohnke, G.Cobion. Ionic conductivity of crystalline and amorphous Na3Al2(PO4)2F3[J]. Solid State Ionics, 1998,111(1-2):67-75.
    [80]D.A. stevens, J.R.Dahn . An in situ small-angle X-ray scattering study of sodium insertion into a nanoporous carbon anode material within an operating electrochemical cell[J]. J. Electro chem. Soc., 2000, 147:4428-4431.
    [81]J.Barker, R.K.B.Gover, P.burns, et al. A symmetrical lithium-ion cell based on lithium vanadium fluorophosphates, LiVPO4F[J].Electrochemical and Solid-State Letters,
    2005,8(6):A285-A287.
    [82]J.Barker, R.K.B.Gover, P.burns, et al.Structural and electrochemical properties of lithium vanadium fluorophosphates, LiVPO4F[J].Journal of power sources,2005,146(1-2):516-520.
    [83]J.Barker, R.K.B.Gover, P.burns,et al. Hybrid-ion a lithium-ion cell based on a sodium insertion material[J].Electrochemical and Solid-State Letters, 2006,9(4):A190-A192.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700