用户名: 密码: 验证码:
有机非线性光学材料的理论分子设计
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
有机非线性光学材料是近年来的研究热点。其中利用量子计算来预测有机材料的非线性光学性质是一个很好的研究方法。本论文中我们用HF/6-31G(d)∥TDHF/6-31G(d)方法从分子设计的角度详细研究了两类非线性光学材料的分子:一维和二维电荷转移分子。
     一维电荷转移体系的研究包括两类分子:希夫碱和1,2,3,4-四氢喹唑啉(THQ)的衍生物。这两类分子的共同特点是只含有一个D-π-A轴。
     我们发现,取代基的种类和位置对希夫碱的第一超极化率有很大影响;由于-CN-基团的存在使得希夫碱有一些独特的性质;它的基态与激发态间的电荷转移量ΔqCN在整个分子的电荷转移量中所占的比例最大,是主要的电荷接受体,ΔqCN与β值成反比关系,相关系数为-0.83。对于1,2,3,4-四氢喹唑啉(THQ)分子衍生物来说,在苯并杂环中的苯环上的6位引入强吸电子基(尤其是能与苯环共轭的吸电子基),可以明显地增加分子的第一超极化率;适当地增大1,2,3,4-四氢喹唑啉衍生物的共轭体系有利于提高β_0/λ_(max)值;尽管苯并杂环体系中杂环的作用等价于胺基的作用,但是杂环上两个氮原子上的氢原子可以形成分子间氢键,有利于分子堆砌成非中心对称的晶体,并提高材料的热稳定性。
     对于二维电荷转移体系,我们研究了氧桥Λ型分子,它含有两个D-π-A轴,属于典型的二维电荷转移体系,且它们的β_(xxx)/β_(yxx)<1。通过自然键轨道(NBO)分析发现,取代基和桥原子氧对分子的非线性光学性质有一定的影响。需要指出的是,这类分子的β_(tot)明显比一维电荷转移分子的β_(tot)小,但是我们研究的二维电荷转移分子的透光性和热稳定性较好。
Organic nonlinear optical materials have been topic in the recent years. HF/6-31G(d)//TDHF/6-31G(d) is a useful theoretical method for nonlinear optical materials in molecular level. In this thesis, we mainly studied two series molecules that were one-dimensional and two-dimensional charge transfer molecules from the viewpoint of molecular design.
    The research on the one-dimensional charge-transfer molecules included schiff bases and derivatives of 1,2,3,4- tetrahydroquiazoline (THQ). Both two kinds of molecules had only one D- π -A axis. The positions and kinds of donor-acceptor substituents had significantly effects on molecular first-order hyperpolarizability of Schiff bases. Due to the existence of group -CN-, the intramolecular charge transfer between ground and excited states was unusual. β tot was approximately proportional to the reciprocal of △qCN and the correlation coefficient is -0.83. For THQ, the 6-substituted derivatives were found to have large first hyperpolarizabilities β and
    the increasing the conjugation of the molecules could improve the values of β0 /λmax.
    The effect of heterocycle in the molecules was similar to that of group -NH2, but the hydrogen on the nitrogen atoms could form the hydrogen bond between molecules which could effectively improve the thermal stability.
    The two-dimensional charge-transfer molecules we studied were the oxygen bridged molecules. The oxygen bridged molecules belonged to the two-dimensional charge transfer system because they had two D- π -A axis and β xxx/β yxx< 1. It was found from the NBO analysis that the substituents and the oxygen atom had significant effect on the molecular first hyperpolarizability. β of two-dimensional charge-transfer molecules were smaller than those of one-dimensional charge-transfer molecules while the thermally stable and visible-transparent for two-dimensional charge-transfer molecules studied were much better.
引文
[1] F. A. Franken, A. E. Hill, C. W. Peters et al Phys. Rev. Lett., 1961, 7, 118.
    [2] 叶成,J.习斯,分子非线性光学的理论与实践,化学工业出版社,1996
    [3] 石顺祥,陆国夫,非线性光学,西安电子科技大学出版社,2003
    [4] 黄发荣,李世瑶,聚合物的非线性光学研究——原理及材料,化工进展,1994,3,2
    [5] Zhao Cun-Yuan Dissertation to Apply for the Ph. D. Degree
    [6] G. Khanarian, Nonlinear Optical Properties of Organic Molecules, Bellingham, WA, USA, 1988
    [7] C. Baumert, R. J. Twieg. G. C. Biorklund, J. A. Logan and C. W. Dirk, Appl. Phys. Lett, 1987, 51, 1484
    [8] Dehu, F. Meyers and J. L. Bredas,J. Am. Chem. Soc., 1993, 115, 6198
    [9] Spec, Publ. R. Soc. Chem., 1989, 69
    [10] 叶成,方世壁,化学通报,1990,5,6
    [11] L. T. Cheng, W. Tam, et al, SPIE 1989, 61, 1147
    [12] EP 335 641(1989)
    [13] R. M. Hooper, et al, Crystal Growth, 1986, Oxford, 395
    [14] (a) JP 01 152 131(1989) (b) DE 3 710 889(1988)
    [15] JP 01 196 628(1989)
    [16] DE 3 737 456(1988)
    [17] JP 63 26 638(1988)
    [18] 冯秋明,国外科技消息,1991,2,471
    [19] DE 3 704 878(1988)
    [20] EP 234 751(1987)
    [21] JP 01 105 918(1989)
    [22] JP 63 291 039(1988)
    [23] Oudar J L, Zyss J, Relations Between Microscopic and Mcroscopic Lowest??Order Optical Nonlinearities of molecular Crystals with One-or Two-Dimensional Units[J], Phys Rev, 1982, 26, 2028
    [24] 秦金贵,刘道玉,有机和金属有机非线性光学晶体材料[J],化学通报,1990,10.23-30
    [25] 仇永清,盖秀兰,程志,苏忠民,封继康等,取代查尔酮衍生物非线性光学性质的F F/P M3理论计算,东北师大学报自然科学版,2000,32,56-59
    [26] 周为群、曹阳,香豆素衍生物分子二阶非线性光学效应理论研究,化学物理学报,1998,11(2),105-108
    [27] M. Yu. Balakina, J. Li, V. M. Geskin, S. R. Marer, et al, nonlinear optical response in acceptor-substituded caratenoids: A theoretical study, Journal of Chemical Physics, 2000, 113(21), 9598-9609
    [28] 曹阳、赵波、左涛,共轭链长及羰基位置对分子二阶极化率的影响,化学物理学报,1997,10(1),16
    [29] De Melo C P, Silbey R. J Chem Phys, 1988, 88, 2567
    [30] Halvorson C, Hagler T W, Moses D, et al. J Synth Met, 1993, 3961, 55-57
    [31] A. Karakas, A. Elmali, et al, nonlinear optical properties of some derivatives of salicylaldimine-based ligands, Journal of Molecular Structure, 2004, 702, 103-110
    [32] M, Jalali-Heravi, A. A Khandar, I. Sheikshoaie, A theoretical investigation ofthe structure, electronic properties and second-order nonlinearity of some azo Schiff base ligand and their monoanions, Spectrochimica acta part A, 1999, 55(12), 2537-2544
    [33] 范卓文,孙志忠,崔瑞海,苯并噻二嗪衍生物电子结构和非线性光学性质的研究,分子科学学报,2002,18(4),216
    [34] 魏家友、王海船、封继康等,取代硅烷系列分子二阶非线性光学性质的ZINDO-SOS研究,化学学报,1997,55,133-139
    [35] John O. Morley, Calculated Hyperpolarisability of Substituted Phenysilanes, J. Chem. Soc. Faraday Trans, 1991, 87(18), 3015-3019
    [36] 张锁秦、封继康、任爱民、李耀先,由螺旋原子连接的系列立体交叉型分子的光谱与二阶非线性光学性质,化学学报,2002,160(8),1428-1432[37] 付伟,封继康,潘革波,设计非线性材料的新思路:质子转移增强光学非线性[J],高等学校化学学报。2001,22(11),1869
    [38] 张锁秦,封继康,任爱民,等.新型非线性光学材料的分子设计——系列螺旋共轭化合物的结构、光谱及二阶非线性光学性质的理论研究[J],化学学报,2001,59(12),2105-2109.
    [39] 王振山,孙秀云等,卤素取代螺旋共轭化合物的电子光谱和二阶非线性光学性质的理论研究,东北师大学报自然科学版,2004,36(1),62-66
    [40] Yamamoto H, Katogi S, Watanabo T, et al. New molecular design approach for noncentrosymmetric crystal structures: lambda(∧)-shaped molecules for frequency doubling[J]. Appl Phys Lett, 1992, 50(8), 935-937.
    [41] David P. Shelton, Julia E. Rice. Measurements and Caculation of the Hyperpolarizability of Atoms and Small Molecules in the Gas Phase[J]. Chem. Rev., 1994(1), 3-29
    [42] Kanis David R, Rater Marks Tobin J. Design and Assemblies with Large Second-order Optical Nonlinearities, Quantum Chemical Sspects[J]. Chem. Rev., 1994, 94(1), 195-242
    [43] 曹阳,邱国芳,新型有机非线性光学材料的分子设计研究[J],苏州大学学报,1992,8(2),195
    [44] 刘永军,刘英,赵显等,新型双重电荷转移分子的二阶非线性光学性质的理论研究[J],化学学报,2001,59(1),48
    [45] Zhao Cun-Yuan Dissertation to Apply for the Ph. D. Degree, 1997
    [46] David R. Kanis, Mark A. Ratner and Tobin J. Marks, Design and Construction of Molecular Assemblities. Quantum Chemical Aspects, Chem. Rev. 1994, 94, 195~242
    [47] 张士国,丛恩同,有机化合物非线性极化率的量子化学计算,滨州师专学报,2002,18(2),25-28
    [48] 王传明,卑凤利等,2-苯基苯并咪唑衍生物非线性光学性质的从头算研究,分子科学学报,2004,20(2),6
    [49] Nobuyuki Matsuzawa and David A. Dixon, Semiempirical Calculation of??Hyperpolarizabilities for Donor-Acceptor Molecules: Comparison to Experiment, J. Phys. Chem. 1992, 96, 6232-6234
    [50] Tsunskawa T. Organic nonlinear optical material. Int Cl: G02F 1/35. Japan. Euro Pat Appl EP. 1987, 250(9), 12-23
    [51] Gaussian 03, Revision B.05, Frisch M J, Trucks G W, Schlegel H B, Scuseria G E, Robb M A, Cheeseman J R, Montgomery J A, Jr., Vreven T, et al. Gaussian. Inc. Pittsburgh PA, 2003.
    [52] Schmidt M W, Baldridge K K, Boatz J A, Elbert S T, Gordon M S, Jensen J H, Koseki S, Matsunaga N, Nguyen K A, Su S J, Windus T L, Dupuis M. J. A. Montgomery[J], J. Comput. Chem., 1993, 14(7), 1347
    [53] 邓卫,钱鹰等.Schifr碱化合物的分子二阶非线性极化率[J].2001,32(3),321-324.
    [54] Ana I. de Lucas, Nazario Martin, et al. The First Tetrathiafulvalene Drivatives Exhibibiting Second-Order NLO Properties[J]. Tetrahedron, 1998, 54, 4655-4662
    [55] DeQuan L., Mark A. R., and Tobin J. M., Molecular and macromolecular nonlinear optical materials. Probing architecture/electronic structure/frequencydoubling relationships via an SCF-LCAO MECI πelectron formalism, J. Am. Chem. Soc., 1988, 110, 1707-1715.
    [56] John Wiley, Sons. March J. Advanced Organic Chemistry, 3rd ed. New York, 1985, 244
    [57] Zhu, X. L.,You X. Z., and Zhang Y., A noval approach to calculation of the second-order nonlinear optical susceptibilities of organic crystals based on energy band theory, Chem. Phys., 2000, 254, 287-296.
    [58] 秦金贵,若干新型有机光电功能材料的分子设计、合成与性能研究,有机化学,2001,21,1081-1089
    [59] 黎俊波,王世敏,二维电荷转移有机二阶非线性光学活性生色团设计合成进展,湖北大学学报,2003,25,248-253
    [60] Ramanathan Sudharsanam, Oxygen bridged nitroanilines for quadratic optics, Journal of Molecular Structure, 2003, 645, 51-59
    [61] H. Yamamoto, S. Katogi, New molecular design approach for??noncentrosymmetric crystal structure, Applied Physical Letters, 1992, 60, 935-37
    [62] Magdalena Pecul, Density functional and coupled cluster calculations of dynamic hyperpolafizabilities and their geometry derivatives, Chemical Physics Letters, 2005, 404, 217-226.
    [63] Y.-Z. Lan, W.-D. Cheng, etc, TDHF-SOS treatments on linear and nonlinear optical properties of Ⅲ-Ⅴ semiconductor clusters (Ga_3As_3, Ga_3Sb_3, In_3P_3, In_3As_3, In_3Sb_3), Chemical Physics Letters, 2003, 372, 645-649.
    [64] X.-D. Li, W.-D. Cheng, D.-S, Wu, Y.-Z. Lan, et al. Theoretical study of molecular and photophysical properties of[5, 6]-open C60 derivatives J. Mol. Struct. (Theochem), 2005, 718, 111.
    [65] X.-D. Li, W.-D. Cheng, D.-S, Wu, Y.-Z. Lan, et al. Modeling of configurations and third-order nonlinear optical properties of C36 and C34X2 (X=B, N), J. Chem. Phys., 2004, 121, 5885.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700