用户名: 密码: 验证码:
电沉积Ni-W-P合金镀层的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
电沉积Ni-W-P合金镀层易形成非晶态结构,因此具有较强的耐腐蚀性和优良的电催化性能,受到人们的极力关注。
     本文以电沉积Ni-W-P合金为研究对象,以镀层在酸性介质中的腐蚀率和镀层的金相组织为考察指标,通过单因素试验,确定镀液中的各个组份浓度和工艺条件的变化对镀层质量的影响。提高硫酸镍的浓度,可提高沉积速率,但浓度过高,镀层中晶核的长大速度大于形成晶核的速度,不利于形成致密的镀层,影响镀层的耐蚀;钨、磷在铁族金属的镀液中,被诱导沉积,二者均可细化镀层组织,但是镀液中钨酸钠和次亚磷酸钠浓度不能太高,否则镀层的内应力升高,产生裂纹;柠檬酸作为络合剂,加大其使用量,能得到较致密的镀层,但加入量过大,增加了金属的析出难度;提高阴极电流密度可形成较致密的镀层,但过高的电流密度,使孔隙率增大,影响镀层的质量;电沉积的温度升高,可提高沉积速度,提高镀层的质量,但过高会加大液体的损耗。
     在单因素试验的基础上,通过正交设计试验,找出了电沉积Ni-W-P合金镀层较佳的镀液组成以及工艺条件:NiSO_4·6H_2O 80g·L~(-1)、Na_2WO_4·2H_2O:170g·L~(-1)、NaH_2PO_2·H_2O 20g·L~(-1)、H_3BO_3 20g·L~(-1)、C_6H_8O_7·H_2O 230g·L~(-1)、光亮剂1g·L~(-1)、表面活性剂0.1g·L~(-1)、J_c=6A·dm~(-2)、T=50℃、t=2.5h、pH=3。并对在此条件下电沉积出合金镀层进行EDAX能谱、XRD和SEM测试和分析,结果表明:得出镀层的成份为Ni:86.64%、W:6.21%、P:9.15%,镀层金相组织均匀,致密具有非晶态结构。
     本试验将Ni-W-P、Ni-W、Ni-P三种合金镀层,以及常用的316L不锈钢四种材料在酸中的耐蚀性进行了比较,发现前三种镀层的耐蚀性均超过了常用的316L不锈钢。但三元合金的耐蚀性优于二元合金。同时对Ni-W-P镀层在镀态和经200×0.5h热处理后两种情况下的耐蚀性进行了比较,发现合金经热处理后的耐蚀性强于镀态的耐蚀性,因为其品态结构变化不大,和镀层表面有一层氧化膜,使
The alloy coating of Ni-W-P electrodeposition can be easier formed as amorphous structure, because this kind of coating have many specific properties especially, in the term of corrosion-resisting and electrocalytiactivity. It is paied attention by more and more researchers.The emphasis of this paper is to survey the alloy of Ni-W-P, there are two indexs considered in total experiments, this is, the corrosion rate and metallographic structure.Firstly, the experiments were done by the method of individual factor,through changing the concentrations of every composition in the electroplating solution and electrodeposition parameters, then got a series of coatings and tested, analysed and contrasted the effects on the qualities of coatings ,mainly, corrosion-resisting and metallographic structure. According to the results, a certain conclusion about every factor can be made. Increasing the concentration of nickel sulfate acid can enhance the rate of deposition. If the concentration is over high the growing speed of crystal nuclear is quickier than that of the forming nuclear which will not beneficial to form the compacting coating, so effect the corrosion-resisting;Tungsten Phosphorus can be induced and slender the crystal grains of the coating;over the higher contents will raise the inner stress;Citric acid can help to attain the compacting coating, if the higher concentration will lead to the difficult of deposition, the higher current density can improve the rate of deposition, if the higher current density can reduce to the larger ratio of pore;the temperature could not be over higher ,or so the solution will be lost quicklily.Secondly, on the base of individual factor conclusion, the experiments were made by means of the orthogonal experiment,the object is further to optimize the composition and concentrations of eletrodeposition solution and technology parameters, in the course of electrode-position of Ni-W-P alloy, The following result is: NiSO_4·6H_2O 80gL~-1
    Na2WO4?2H2O 170 gL"1, NaH2PO2?H2O 20 g-L"1, H3BO3 20 gL"1 , C6H8O7*H2O 230 g-L"'> Brightener 1 gh~\ Surface active agent: 0.1 g-L~\ Cathode current density (Jc) :6Adm~^ Temperature (T) 50°C , Time(t) 2.5h -. pH value: 3. The coating which was gotten under the better conditions is tested and analysed by the instruments of EDAX, X-ray diffraction (XRD), Scanning Electro Microsope. (SEM). The results was shown that the coating is made of Ni: 86.64%, W: 6.21 %, P:9.15%, and present a even, fine amorphous structure.The comparable experiments were testd among the alloys of Ni-W-P, Ni-W, Ni-P and commonly 316L stainless steel. In the term of corrosion-resisting, the results is shown that the three kinds of coatings have better corrosion-resisting that 316L stainless steel, but tri-alloy has advanced quality over the duality alloy.In the experiment, the rate of corrision were compared between the states of plating and the heat-treatment, after 200°C><0.5h. It is concluded that the state of the heat-treatment has preponderance over of the plating in the corrosion-resisting.In the paper, the researchers about the electrocalytic activity were worked to the three kinds of alloy ,Ni-W-P, Ni-W^ Ni-P. It is found that the activity sequence is arranged from high to low as the form Ni-W-P, Ni-P, Ni-W. Therefore, it is claimed that nickel element forms the alloy with the transition metal and nonmetal which can improve the electrocalytic activity in the course of hydrogen evolution, and that the nonelements of high electric negative has better quality than tansition metals
引文
[1] 宋长生.化学镀镍合金的耐蚀性.电镀与精饰,1995,(3):21
    [2] Lin K L. Hsu C J et al.J. Mater, Engineer, Perform, 1992, 1(3): 359
    [3] 向国朴.脉冲电镀发展概况.电镀与涂饰,2000(4):43—47
    [4] Krishnan R M.Joseph Kennedy C et al.Metal Finishing, 1995, (6): 33
    [5] 屠振密.电镀合金原理与工艺.北京.国防工业出版社,1993。5
    [6] 朱龙章.张景双.代铬镀层的研究与应用.电镀与环保,2001(1):20~23
    [7] Chassaining E. Quang K Vu. Plating and Coatings Technology 1992, 53:257
    [8] PodlahaEJ.Mathosz M and Landolt D J.Electrochem,Soc., 1993,140 (10):L149
    [9] 冯开文.多层电镀提高Ni—P合金镀层防护性能的研究.电镀与精饰,1997(6):8
    [10] Safranek W H.The properties of Electrodepositied Metals and Alloys, New York。 1974.327
    [11] 姚素薇.邵光杰.电镀Ni—P合金镀层工艺研究.材料保护,2000(6):3—5
    [12] 陈亚.现代实用电镀技术.北京.国防工业出版社,2003.164~165
    [13] Fan Chonglun, Piton D L.Electrochemica Acta, 1996, 41(10): 1713
    [14] 周白阳.电沉积光亮Ni-Co合金工艺的研究.电镀与环保,2000(3):14
    [15] Chassaining E. Quang K Vu et al. Plating &Surface Finishing. 1990, 77(8):60.
    [16] 张义成.电沉积Ni-Co合金的研究.电镀与精饰,1995(6):4
    [17] Grimmett David Let al.J. Electrochem.Soc., 1988,135(12): 2952
    [18] Alec Watson S. Products Finishing, 1996, (11): 47
    [19] 李东林等.Fe-Cr-Ni及Fe-Ni合金相组成的研究,电镀与精饰,1994,16(2:9)
    [20] 卢燕平.蔡积庆.Ni—W系合金电镀.电镀与环保,1998(3):14
    [21] 李金桂.防腐蚀表面工程技术.北京.化学工业出版社,2002
    [22] Pushpavanam M.Natarajan S. Rand Balkrishan K.Plating—Surface Finishing, 1997, 84 (6): 89
    [23] 周婉秋.Ni—W非晶态镀层的制备和性能研究.电镀与涂饰,1996(4):18—24
    [24] 韩勇.王萍等.电镀镍系合金的研究.电镀与精饰,1997,19(5):8
    [25] Sridharan K.Shappard K.J.Appl.Electrochem。1997, 27: 1198
    [26] 郭忠诚.朱晓云.杨显万.电沉积RE-Ni-W-P-SiC复合材料镀层的阴极行为.材料保护,2001(7)
    [27] 渡边微等.非晶态电镀方法及应用.北京.北京航空航天大学出版社,1989
    [28] 陈亚.现代实用电镀技术.北京.国防工业出版社 2002 13~20
    [29] 安茂中主编.电镀理论与技术.哈尔滨.哈尔滨工业大学出版社,2004
    [30] 周绍民.金属电沉积-原理与研究方法.上海.上海科学技术出版社,1987.75~76
    [31] 郭鹤桐.陈建勋.刘淑兰编著.电镀工艺学.天津.天津科学出版社,1985,64~65
    [32] 蒋汉瀛.冶金电化学.北京.冶金工业出版社,1982.
    [33] 安特罗波夫 L I.理论电化学.吴仲达等译.北京.高等教育出版社,1982.
    [34] 曾华墚.吴仲达编.电镀基本原理与实践.机械工业出版社,1986.
    [35] 张宏祥.王为.电镀工艺学.天津.天津科学出版社,2002.40-45
    [36] 杨熙珍.杨武.金属腐蚀电化学热力学电位—pH图及其应用.北京.化学工业出版社,1991.
    [37] 张声涛.电镀工程.北京.化学工业出版社,2002
    [38] 朱龙章.张庆元等.材料保护,1997,30(5):4
    [39] 朱诚意等.Na_2WO_4·2H_2O加入量对铜基Ni-W-P合金镀层性能的研究.电镀与精饰,2003(2):1
    [40] 唐黎明.王玲玲.水溶液中电沉积Ni-Ce-P合金.电镀与精饰.2003(3):6
    [41] 莫似浩.钨冶炼的原理和工艺.北京.轻工业出版社,1984.16~20
    [42] 张远声.龚敏.电镀非晶态Fe-W-P合金工艺研究.电镀与精饰,1998(1):4
    [43] 唐黎明.王玲玲.水溶液中电沉积Ni-W-P合金.电镀与精饰,2003(4):16
    [44] 李恩平.谢原寿.电沉积制备Cu/Ni-W-P新阴极材料的研究.电镀与涂饰,2002(4):4
    [45] Duncan J.E. Kepert D.L.. J.Ghem.Soc.,5317(1961 ).
    [46] Duncan J.F.. Kepert D.L.. J.Ghem.Soc.,205(1962).
    [47] 王秦生主编.超硬材料制造.北京.中国标准出版社,2002.200
    [48] 李勇.朱应禄.电沉积钨钴合金的工艺研究.江西.中国钨业,2002(4):11~12
    [49] 陈祝平.特种电镀技术.北京.化学工业出版社,2004.83
    [50] 龙志林.彭万里.周益春.硫酸盐电沉积Zn—Fe合金性能的研究.电镀与环保,2004(2):17~19
    [51] 李洁琼.姜秉元.电沉积Ni-W-P非晶态合金的组织结构与耐蚀性能.河科技大学学报(自然科学版),2005(3):18~21
    [52] Brewer L.Bouding and Structures of Transtion Metals.Science, 1968.161:115~122
    [53] Paseka.Ievolution of Hydrogen and its Sorption on Remarkable Active Amorphous Smooth Ni-P(X) Electrodes Electrochem Acta,1995, 40 (11): 1633~1640
    [54] 查全性著.电极过程动力学导论(第二版).北京.科学出版社,1987.
    [55] 郭建华.张蕴珊.Ni—W-P合金镀层的研究.东北大学学报,1994(6):628
    [56] 郑瑞庭.电镀实践600例.北京.化学工业出版社,2004.152
    [57] 黄桂柱.有色冶金试验研究方法.北京.冶金工业出版社,1986.56~73
    [58] Brenner A.Electrodeposition of Alloys.New York &London: Academic Press, 1963.2: 429
    [59] 曾跃.姚素薇.盐酸介质中镍基合金的腐蚀行为.材料保护,1993,26(9):4
    [60] 杜楠.赵晴.Ni-W-P合金镀层的电化学腐蚀行为.材料保护,1994,17(9):8
    [61] 钱文锟.王为.二元合金镀层析氢性能的研究.电镀与精饰,2003,27(2):11~13
    [62] 王龙彪.黄清安.陈永言等.电沉积镍-钴-磷合金析氢反应电催化行为的研究.电镀与涂饰,1998,17(4):1~3
    [63] 林文修,郑巧云,薛文华等.镍钨合金电沉积及其析氢反应性能的研究.福建师范大学学报,2000(3):47

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700