用户名: 密码: 验证码:
古斯—汉欣位移的增强研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
古斯-汉欣位移在光通信、近场光学探测等领域中具有十分重要的地位。在单一界面上,全反射光束的古斯-汉欣位移不足一个波长,很难进行测量,从而阻碍了它在实际中应用。近年来,古斯-汉欣位移的增强成为该领域研究的热点之一。本文首先介绍了有关古斯-汉欣位移的发展、现状及理论研究的主要方法——稳态相位法和能流法。在此基础上,用稳态相位法分别对镀介质膜的棱镜结构、单侧镀膜的对称双棱镜结构及增益介质膜结构中反射和透射光束的古斯-汉欣位移进行了理论分析,讨论了入射角变化、薄膜厚度变化及空隙宽度变化与古斯-汉欣位移变化的规律。研究发现,三种结构中的古斯-汉欣位移均随入射角或薄膜厚度变化而共振增强,可达几十甚至几百波长。在单侧镀膜的对称双棱镜结构中,若在入射侧棱镜的斜面上镀介质膜,反射光束的古斯-汉欣位移约为透射光束位移的一半;若在透射侧棱镜的斜面上镀介质膜,反射光束的古斯-汉欣位移在共振点附近为负位移。在弱增益介质膜结构中,可获得很大的负位移共振峰且易于测量。为了验证理论结果,用微波束入射薄膜增强结构,测量了反射微波束的古斯-汉欣位移,讨论了实验误差及应采取的措施。结果表明,对线偏振电磁波,理论结果与实验结果符合得很好。
Goos-Hanchen (GH) Shift plays an important role in the field such as optical communication, near field measurement and so on. However, this shift of reflected light beam that occurs in a single-interface is less than one wavelength and difficult to measure. Therefore, its application is impeded for a long time. Recently, the enhancement of Goos-Hanchen Shift becomes one of the focus in this field. Firstly, the development, the main theoretical approachs such as the stationary phase method and the nenergy flux method are introduced. Based on the above description, the Goos-Hanchen shift of the refletected and transmitted light beam in the film-coated dielectric prism configuration, a single film-coated symmetric double-prism configuration and the weakly active dielectric film coated prism configuration is thoroughtly investigated by the stationary phase method. The dependence of the Goos-Hanchen shift on the incident angle, the thickness of thin film and the thickness of air gap is discussed separately. It is shown that the Goos-Hanchen shift of the discussed configuration are resonantly enhanced with respect to the incicent angle or the the thickness of the thin film, and its magnitude can be of one or two order of wavelength when the angle of incidence is larger than the critcal angle for total reflection at prism-vacuun interface and is small than but close to the critical angle for reflection at the prism-film interface. In the single film-coated symmetric double-prism configuration when the thin film is coated onto the surface of the first prism, the shift of transmitted beam is about half the shift of reflected beam. In the single film-coated symmetric double-prism configuration when the thin film is coated onto the surface of the second prism, the shift of reflected beam is negative near the resonant point. In the weakly active dielectric film-coated prism configuration, many resonant peak of the giant negative shift can be achieved and easiely measured. In order to varify the theoretical prediction, microwave experimental setup of the reflected beam shift is designed and the shift is measured. the experimental errors and the Means to reduce them is also discussed. For linear polarized microwave beam, The experimental measurements are in good agreement with theroretical calulations.
引文
[1]M.Born,E.Wolf.Principles of optics(7~(th)).Cambridge:Cambridge university press,1999,ⅹⅹⅵ-ⅹⅹⅹⅲ
    [2]Durig U,Pohl D W,Rohner F.Near field Optical Scanning Microscopy.J Appl Phys,1986,59(10):3318-3327
    [3]Betzig E,T rautman J K.Near field Optics:Microscopy,Spectroscopy,and Surface Modification Beyond the Diffraction Limit.Science,1992,257(5067):189-195
    [4]Shelly M John,Radhakrishnan P,Nampoori V P.A fiber optic evanescent wave sensor for monitoring the rate of pulsed laser deposition of metal thin films.Meas.Sci.Technol.,1999(10):17-20
    [5]杨忠直.Goos-Hanchen效应在被动调Q激光器中的应用.天津大学学报.1984.4:55-61
    [6]Takaharu Hashimoto,Toshihiko Yoshino.Optical Heterodyne sensor using the Goos-H(a|¨)nchen shift.Opt.Lett.,1989,14(17):913-915
    [7]T.Sakata,H.Togo,F.Shimokawa.Reflection-type 2×2 optical waveguide switch using the Goos-H(a|¨)nchen shift effect.Appl.Phys.Lett.,2000,76(20):2841-2843
    [8]Yin Xiaobo,Lambertus Hesselink.Highly Sensitive Surface Plasmon Resonance Chemical Sensor based on Goos-Hanchen Effects.Proc.Of SPIE,2006,6324:63240B-1-63240B-8
    [9]Yang Xiaoyan,Liu Deming,Xie Wenchong,Li Chunfang.High-Sensitivity Sensor Based on Surface Piasmon Resonance Enhanced Lateral Optical Beam Displacements.Chin.Phys.Lett.,2007,24:458-461
    [10]I.Newton.Optics.Dover,Newyork,1952
    [11]F.Goos,H.H(a|¨)nchen.Ein neuer und fundamentaler Versuch zur Totalreflexion,Ann.Physik,1,1947:333-346
    [12] K. Artmann. Berechnung der Seitenversetzung des totalreflektierten Strahles.Ann.Phys.(Leipzig), 1948(2): 87-102
    [13] C. V. Fragstein. Ann. Physik, 1949,4: 271-275
    [14] B. R. Horowitz, T. Tamir. Lateral Displacement of a Light Beam at a Dielectric Interface. J. Opt. Soc. Am., 1971,61(5): 586-594
    [15] H. M. Lai, F. C. Cheng, W. K. Tang. Goos-Hanchen effect around and off the critical angle. J. Opt. Soc. Am. A, 1986, 3(4): 550-557
    [16] R. H. Renard. Total Reflection: A new evaluation of the Goos-Hanchen Shift. J. Opt. Soc. Am., 1964, 54(10): 1190-1197
    [17] M. McGuirk, C. K. Carniglia. An angular spectrum representation approach to the Goos-Hanchen shift. J. Opt. Soc. Am., 1977, 67(1): 103-107
    [18] T. Tamir, H. L. Bertoni. Lateral Displacement of Optical Beams at Multilayered and Periodic Structures. J. Opt. Soc. Am., 1971, 61(10): 1397-1413
    [19] T. Tamir. Nonspecular phenomena in beam fields reflected by multilayered media. J. Opt. Soc. Am. A, 1986,3(4): 558-565
    [20] R Kaiser, Y Levy, J Fleming, etal. Resonances in a single thin dielectric layer: enhancement of the Goos-Hanchen shift. Pure Appl. Opt., 1996, 5: 891-898
    [21] Li Chunfang, Yang Xiaoyan. Thin-Film Enhanced Goos- H(a|¨)nchen Shift in Total Internal Reflection. Chin. Phys. Lett., 2004,21 (3): 485-488
    [22] D. Felbacq, A. Moreau, R. Sma(a|^)li. Goos-Hanchen effect in the gaps of photonic crystals. Opt. Lett., 2003, 28(18): 1633-1635
    [23] Walter J. Wild, C. Lee Giles. Goos-Hanchen shifts from absorbing media. Phys. Rev. A, 1982,25(4): 2099-2101
    [24] H. M. Lai, S. W. Chan. Large and negative Goos-Hanchen shift near the Brewster dip on reflection from weakly absorbing media. Opt. Lett., 2002, 27(9): 680-682
    [26] Wang Ligang, Chen Hong, Zhou Shiyao. Large negative Goos-Hanchen shift from a weakly absorbing dielectric slab. Opt. Lett., 2005, 30(21): 2936-2938
    [27] Wang Ligang, Zhu Shiyao. Large positive and negative Goos-Hanchen shifts from a weakly absorbing left-handed slab. J. App. Phys., 2005, 98: 043522
    [28] J. B. Pendry. Negative Refraction Makes a Perfect Lens. Phys. Rev. E, 2000, 85(18): 3966-3969
    [29] P. R. Berman. Goos-Hanchen shift in negatively refractive media. Phys. Rev. E, 2002, 66: 067603
    [30] J. Fan., L. J. Wang. Reflection of a Gaussian laser pulse by an active medium. Optics Communications, 2006,259: 149-153
    [31] Yan Ying, Chen Xi, Li Chunfang. Large and negative lateral displacement in an active dielectric slab configuration. Physics Letters A, 2007, 361: 178-181
    [32] W. P. Chen, G Ritchie, E. Burstein . Excitation of Surface Electromagnetic Waves in Attenuated Total-Reflection Prism Configurations. Phys. Rev. Lett., 1976, 37(15): 993-997
    [33] S. L. Chuang. Lateral shift of an optical beam due to leaky surface-plasmon excitations. J. Opt. Soc. Am. A, 1986, 3(5): 593-599
    [34] G Abbate, P. Maddalena, E. Santamato. Observation of lateral displacement of an optical beam enhanced by surface plasmon excitation. Journal of Modern Optics, 1988, 35(7): 1257-1262
    [35] A. K. Ghatak, M. R. Shenoy, I. C. Goyal, K. Thyagarajan. Beam propagation under frustrated total reflection. Optics Communications, 1986(56): 313-317
    [36] Jacob Broe, Ole Keller. Quantum-well enhancement of the Goos-Hanchen shift for p-polarized beams in a two-prism configuration. J. Opt. Soc. Am. A., 2002, 19(6): 1212-1222
    [37] Li Chunfang, Wang Qi. Prediction of simultaneously large and opposite generalized Goos-Hanchen shifts for TE and TM light beams in an asymmetric double-prism configuration. Phys. Rev. E, 2004(69), 055601(R)
    [38]朱绮彪,李春芳,陈玺.双棱镜结构中透射光束的古斯-汉欣位移.光学学报,2006,25(5):673-677
    [39]段弢,李春芳,杨晓燕.电介质膜对受抑全内反射结构中古斯-汉欣位移的增强.光学学报,2006,26(11):1744-1748
    [40]V.Akylas,J.Kaur,T.M.Knasel.Measurement of the longitudinal shift of radiation at total internal reflection by microwave techniques.Am.J.Phys.,1976,44(1):77-80
    [41]J.J.Cowan,B.Anicin.Longitudinal and transverse displacements of a bounded microwave beam at total internal reflection.J.Opt.Soc.Am.,1977,67(10):1307-1314
    [42]Fabien Bretenaker,Albert Le Floch,Laurent Dutriaux.Direct Measurement of the Optical Goos-H(a|¨)nchen Effect in Lasers.Phys.Rev.Lett.,1992,68(7):931-933
    [43]O.Emile,T.Galstyan,A.Le Floch,F.Bretenaker.Measurement of the Nonlinear Goos-H(a|¨)nchen Effect for Gaussian Optical Beams.Phys.Rev.Lett.,1995,75(8):1511-1513
    [44]Bradley M.Jost,Abdul-Azeez R.Al-Rashed,etal.Observation of the Goos-H(a|¨)nchen Effect in a Phase-Conjugate Mirror.Phys.Rev.Lett.,1998,81(11):2233-2235
    [45]Hervé Gilles,Sylvain Girard,Joseph Hamel.Simple technique for measuring the Goos-H(a|¨)nchen effect with polarization modulation and a position-sensitive detector.Opt.Lett.,2002,27(16):1421-1423
    [46]Frank Pillon,Herve Gilles,Sylvain Girard.Experimental observation of the Imbert-Fedorov transverse displacement after a single total reflection.Appl.Opt.,2004,43(9):1863-1869
    [47]Frank Pillon,Hervé Gilles,Sylvain Girard,etal.Goos-H(a|¨)nchen and Imbert-Fedorov shifts for leakly guided modes.J.Opt.Soc.Am.B,2005,22(6):1290-1299
    [48]Yin Xiaobo,H.Lambertus,Liu Zhaowei,etal.Large positive and negative lateral optical beam displacements due to surface plasmon resonance,Appl.Phys.Lett.,2004(85):372-374
    [49]A.Haibel,G.Nimtz,A.A.Stahlhofen.Frustrated total reflection:The double-prism revisited.Phys.Rev.E,2001,63(4):047601-1~047601-3
    [50]D.M(u|¨)ller,D.Tharanga,A.A.Stahlhofen,etal.Nonspecular shifts of microwaves in partial reflection.Europhys.Lett.,2006,73(4):526-532
    [51]李春芳,杨晓燕,段弢,张纪岳.电介质膜增强的Goos-H(a|¨)nchen位移的微波测量.中国激光,33(6):753-755
    [52]Li Chunfang,Zhu Qibiao,G.Nimtz,Chen Xi,etal.Experimental observation of negative lateral displacements of microwave beams transmitting through dielectric slabs.Opt.Comm.2006,259:470-473
    [53]A.K.伽塔克,K.谢加拉扬著,袁一方等译.近代光学.第1版.北京:高等教育出版社,1987.345-351

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700