用户名: 密码: 验证码:
ф50折流板脉冲萃取柱的水力学性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文在50mm柱径的折流板脉冲萃取柱中,以1mol/L的硝酸及30%TRPO—煤油体系对吹气法测量存留分数方法和该体系的水力学特性进行了研究,研究了时均摩擦压降特征以及结构参数(板开孔率和板间距参数)和操作参数(脉冲强度,流量等)对水力学性能的影响。
    吹气法测量折流板脉冲萃取柱分散相存留分数的实验结果表明:时均摩擦压降在单相流速为零或者两相流比为1时均为零。当单相流速不为零时,脉冲强度对时均摩擦压降的影响显著。对硝酸溶液,流型影响因子随板间距增大而减小,随板开孔率增大而减小;对30%TRPO—煤油溶液,流型影响因子与板间距无关,随着雷诺数的增加而增大,随着板开孔率增加而减小。通过实验得到不同连续相时的流型影响因子计算公式。两相流比不为1时,时均摩擦压降可近似用相应连续相的单相流模型计算,这样计算得到的存留分数与利用体积置换法结果是一致的。
    对折流板脉冲萃取柱水力学特性的研究内容主要包括液泛特征及正常操作时分散相存留分数。实验结果表明:液泛通量随着脉冲强度的减小、流比以及板开孔率的增加而增加;而板开孔率为23%时,液泛存留分数比板开孔率为17%及30%的大,对于正常操作时,分散相的存留分数随连续相流速、流比呈线性增加,而脉冲强度、板开孔率及板间距相互影响,其中板开孔率为23%时,脉冲强度和板间距相互影响最大,结合液泛存留分数特征,建议在处理TRPO—煤油与HNO_3体系时,选择板开孔率为23%。上述实验研究,为折流板脉冲萃取柱的放大设计及在后处理厂中应用提供了初步基础。
The method of air-purge to measure holdups and the hydrodynamiccharacteristics of the 50mm-diameter discs and doughnuts pulsed extraction columnwith 1mol/L HNO3 solution and 30%TRPO-Kerosene solution are studied in thispaper. The time-averaged frictional pressure drop and the influences of theparameters of column configuration and operation on the hydrodynamiccharacteristics have investigated.
    The experimental results using the method of air-purge to on-line determine theholdup of dispersed phase in the discs and doughnuts pulsed extraction columnindicate as follows:
    (1) if the single-phase flow rate is equal to zero or the flow ratio of thetwo-phase is one, the time-averaged frictional pressure drop is zero.
    (2) When the single-phase flow rate is not zero, the influence of pulsedintensity on the time-averaged frictional pressure drop is distinct. For HNO3solution, the influence factor, C0, defined from the Noh's model, decreases withthe increasing of the plate spacing and packing free-area. However for the30%TRPO-Kerosene solution, C0 has no relation to the plate spacing, increaseswith the increase of Reynolds number and but reduces with the increase ofpacking free-area.
    (3) When the flow ratio of the two-phase is not one, the time-averagedfrictional pressure drop can be predicted by the equation for single-phase flowwhere the flow rate refers to that of the corresponding continuous phase. Theholdup calculated from Noh's model is in good agreement with that measured bythe method of volume substitution.
    The study on the hydrodynamic characteristics of the discs and doughnuts pulsedextraction column includes flooding characteristics and the holdups of dispersedphases. The experimental results indicate as follows:
    (1) the flooding flux increases with the decreasing of pulsed intensity, theincreasing of flow ratio and the increasing of packing free-area, while the
    flooding-holdup of the packing free-area of 23% is larger than that of 17% and30%.(2) Within the normal operation, the holdup increases linearly with the flowrate of continuous phase and the flow ratio of two-phases, while the effect of thepulsed intensity, packing free-area and the plate spacing on the holdup iscomplicated because of the interaction of the three parameters. Comparison to thecolumn of 17% and 30%, the influence of the pulsed intensity and plate spacingon the holdup of that of 23% is dominated.Therefore, when the column is applied in 30%TRPO-Kerosene and HNO3system, the best packing free-area of the discs and doughnuts pulsed extractioncolumn is suggested to be 23%.
引文
[1] 徐景明. 先进核燃料循环(课程教材). 北京:清华大学. 2003: 14~25
    [2] 焦荣州,宋崇立,等. 萃取分离法处理高放废液的进展. 原子能科学技术, 2000,34(5):473
    [3] 郑华玲. TRPO 提取锕系元素工艺流程的研究. 核科学与工程,1985,5(2):147
    [4] 宋崇立,杨大助,何龙海,等. 用 TRPO 从高放废液中去除锕系元素-TRPO 流程模拟料液实验. 核科学与工程,1992,12:225
    [5] 姜圣阶,任凤仪,等. 核燃料后处理工学. 北京:原子能出版社,1995: 328
    [6] 吴秋林,陈靖,等. 脉冲萃取柱流体力学性能研究-模拟料液体系. 高放废液分离技术研究一九九九年度进展报告, 2000:172
    [7] Tsuyuki T, Tanaka C, Shimauchi H, et al. Extraction Demonstration Test of Annular Pulsed Column: I. Confirmation of Equipment Performance,ISEC'93,1993
    [8] Tsuyuki T, Tanaka C, Shimauchi H, et al. Extraction Demonstration Test of Annular Pulsed Column: II. System Test,ISEC'93,1993:
    [9] Rajan S M, Heideger W J. Drop Formation Mass Transfer. AICHE.J,1971,17(2):202~206
    [10] Mylne K Y, ResnicK W. AICHE J. 1972, 18(1): 122
    [11] Bonnet J C, Jeffreys G V. AICHE J. 1985,31(5): 788
    [12] Foster H R. 溶剂萃取脉冲筛板萃取柱瞬时存留分数特征. 脉冲萃筛板取柱柱研究的新进展,北京:原子能出版社,1985
    [13] Najim K, et al. Learning Control of a Pulsed Liquid-liquid Extraction Column. Chem Erg Sci, 1987,42(7):1619~1628
    [14] HavliceK A, Sovova H. Collect Czech. Chem Conmun, 1984,49: 378
    [15] Bonnet J C, Tavlarides L L. Ultrasonic Technique for Dispersed-phase Hold-up Measurement. Ind Eng Chem Res, 1987,26: 811~815
    [16] Dewitt R, Geers L. Bottom Interface Control in a Pulsed Column by Direct air-purge. ETR-155,1965:45~50
    [17] 陈靖,徐世平,吴秋林,等. 吹气法在线测量脉冲萃取柱参数研究. 原子能科学技术,2001,s1: 34~35
    [18] 傅蓉. 脉冲萃取柱参数的在线测量与控制研究:[博士论文]. 北京: 清华大学核能与新能源技术研究院, 2002
    [19] Noh S H, Baird M H I. Mass Transfer and Pressure Drop in a Cocurrent Reciprocating Plate Extraction Column. AICHE Journal, 1984, 30(1):120~127
    [20] 鲍晓军,王蓉,陈家镛. 压降法测量往复振动筛板萃取柱内分散相的滞存率. 高校化学工程学报,1994,8(3):230~236
    [21] Milot J F, Duhamet J, Gourdon C, et al. Simulation of a Pneumatically Pulsed liquid-liquid Extraction Column. Chem Erg J, 1990, 45:111~122
    [22] 汪家鼎,沈忠耀,汪承藩. 液液萃取脉冲筛板塔中两相流动特性的初步研究. 化工学报,1965,4:251
    [23] MiseK T. Hydrodynamic Behavior of Agitated Liquid Extractors. Collection of Czechoslovak Chemical Communications, 1963,28(7):163~170
    [24] Angelov G, Journe C. Simulation of the Flow Patterns in a Disc and Doughnut Cloumn. Chem Eng J, 1990, 45: 87~97
    [25] Angelov G., Gourdon C, and Line A. Simulatin of Flow Hydrodynamics in a Pulsed Solvent Extraction Column under Turbulent Regimes. Chem Eng J, 1998, 71: 1-9
    [26] Zaharieva A, Masbernat O, et al. Experimental and Numerical 2-D Turbulent Field in a Pulsed Extraction Column,ISEC'96,1996:1233~1238
    [27] M Aoun Nabli,P Guiraud,C Gourdon. Numerical Experimentation: a Tool to Calculate the Axial Dispersion Coefficient in Disc and Doughnuts Pulsed Solvent Extraction Column. Chem Eng Sci, 1997, 52(14): 2353~2368
    [28] Bardin-Mornier N, Guiraud P, Gourdon C. Lagrangian Simulations Contribution to the Knowledge of Discs and Doughnuts Pulsed Solvent Extraction Columns Hydrodynamcis. Chem Eng Process, 2003, 42: 503
    [29] Thorton J D. Spray Liquid-liquid Extraction Column Prediction of Limiting Hold-up and Flooding Rates. Chem Eng Sci, 1956, 5: 201~208
    [30] 杨欣,戴为智,等. 折流板环形脉冲柱用作 Purex 工艺 1A 接触器研究.原子能科学技术,1995,29(3):385
    [31] Bracou H, Borda G. Influence of Plate Weltability upon Dispersion Transport in a liquid-liquid Extraction Column, Melbourne Australia. ISEC'96, 1996:1149~1154
    [32] Mate A, Morchair J, Masbernat O, et al. A Transient Method for the Study of Wetting in a liquid-liquid contactor. Chem Erg Sci, 1996,51:5313~5323
    [33] 邰德荣,杨欣,王欣昌. 脉冲萃取柱筛板表面浸润性能的研究. 核科学与工程,1991,11(4):331~341

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700