用户名: 密码: 验证码:
无陀螺SINS/GPS组合导航系统研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
无陀螺捷联惯性导航系统主要由加速度计组成。该系统舍弃陀螺仪,用加速度计代替陀螺仪作为惯性测量元件,这不仅可以克服陀螺无法承受大的加速度冲击的缺点,而且可以减小体积,大大降低成本。该系统具有成本低、功耗小、寿命长、可靠性高、抗过载等优点,可以广泛用于军用与民用。无陀螺捷联惯性导航系统是中等精度的导航系统,由于误差积累快,所以在该系统中引入GPS,将两种导航系统进行组合。用GPS测得的导航信息校正无陀螺捷联惯导系统的导航参数误差,提高导航精度,并且可以用于长时间导航。
     论文的创新性研究和主要工作如下:
     (1)根据无陀螺捷联惯性导航系统的工作原理,提出一种新的九加速度计安装方案。该方案设计简单,不仅便于加速度计安装,而且可以提供加速度计的冗余信息,便于载体角速度的解算。
     (2)采用三种解算方法进行载体角速度解算。其中方法一直接对解算出的角加速度积分;方法二通过解算出的角速度平方项开方;方法三利用扩展卡尔曼滤波对解算出的角速度进行校正。经过扩展卡尔曼滤波算法校正后,可有效地提高载体角速度的解算精度。
     (3)研究并推导出沿坐标轴向的加速度和角加速度误差,根据无陀螺捷联惯导系统的力学编排方程,推导出系统误差方程。
     (4)对无陀螺SINS/GPS组合导航系统进行了研究,利用卡尔曼滤波器进行导航参数的误差估计和反馈校正,有效地抑制了导航误差的累积,提高了导航系统的定位精度。
     最后,对低成本无陀螺SINS/GPS组合导航系统进行了仿真研究,解决了无陀螺捷联惯导系统角速度解算及组合导航系统应用中的一些技术问题,为该系统走向工程实践提供了一定的理论依据。仿真结果表明:组合导航系统的具有较高的导航精度。
The gyro-free strapdown inertial navigation system(GFSINS) is only composed of accelerometers in which gyroscopes are not used. Using accelerometers instead of gyroscopes as the inertial measurement unit not only overcomes the demerit that gyroscope is difficult to support the large angle motion, but also reduces the volume and falls the price abruptly. The GFSINS has the advantage of low cost, low power consumption, long time running, high reliability, strong over loading and is widely applied to the military and the civil. The GFSINS is a navigation system of medium precision. An absence of gyroscopes leads to the accelerated growth of errors and the required levels of precision hard to achieve in short time, so the integrated navigation system of GFSINS and GPS is used. During motion the navigation parameter errors are adjusted by the data obtained from GPS, which meet the accuracy and time requirements for navigation systems.The innovative study and main work of the thesis are as follows:First, according to the work principle of the GFSINS, a new configuration of nine accelerometers is proposed. The design of the configuration is simple, which provides the redundant information of accelerometers and is benefit to the calculation of angular velocity.Second, three solution methods to solute the angular velocity of the carrier are adopted. The first method is to integrate the angular acceleration directly. The second is to extract the square of the angular velocity. The third is to adjust the angular velocity by the extend Kalman filtering algorithm, so as to improve the calculative accuracy of the angular velocity of the carrier.Third, the error of the axial acceleration and the angular acceleration are studied and formulated. According to the mechanical calibration equations of GFSINS the error equation of the system is derived.Forth, the GFSINS/GPS integrated navigation system is studied. The Kalman filtering algorithm is used to make the error estimation and feedback adjustment, the accumulation of the navigation error is inhibited and the positioning accuracy of the navigation system is improved.Finally, the low-cost GFSINS/GPS integrated navigation system is studied by simulation, which solves some technique problems in the application of solution of the
    angular acceleration in GFSINS and integrated navigation system. Simulation results show that the integrated navigation system has high navigation accuracy.
引文
[1] 许国祯.从精确制导武器的发展看惯性技术的新贡献[J].电光与控制,2003,10(3):23-27.
    [2] Kyeum R. Cho, Peter M.Bainum, Young D. Kim, Tan, Zhaozhi. Development of inertial measurement sensor using magnetic levitation[J]. Advances in the Astronautical Sciences, 2002, 112(1):85-102.
    [3] Corey V B. Measuring Angular Acceleration with Linear Acceleration[J]. Control Engineering, 1962, (2): 79-80.
    [4] L.D. DiNapoli. The Measurement of Angular Velocities without the Use of Gyros[D]:[M. S. thesis]. The Moore School of Electrical Engineering, University of Pennsylvania, Philadelphia, 1965.
    [5] Alfred R. Schuler. Measuring Rotational Motion with Linear Accelero-meters[J]. IEEE Trans. On AES, Vol. AES-3, No, 3 1967:465-471.
    [6] Padgaonkar A J, Krieger K W, King A I. Measurement of Angular Acceleration of a Rigid Body Using Linear Accelerometers[J]. Journal of Applied Mechanics, 1975, 42(5): 552-556.
    [7] Marcelo C. Alarain. Accelerometer-Based Platform Stabilization[J]. SPIE Acquisition, Tracking, and Pointing, 1991, 1482: 367-382.
    [8] Jeng-Heng Chen, S. C. Lee, Daniel B. DeBra. Gyroscope Free Strap-down Inertial Measurement Unit by Six Linear Accelerometers[J]. Journal of Guidance, Control and Dynamics, Vol. 17, No. 2, 1994.
    [9] Lee S C, Cheng Y L. Innovative Estimation Method with Own-ship Estimator for an All accelerometer-type Inertial Navigation System[J]. International J of Systems Science, 1999, 30(12): 1259-1266.
    [10] Kirill. S. Mostov. Design of Accelerometer-Based Gyro-Free Navigation Systems[D] :[D. S. thesis]. University of California, Berkeley, 2000.
    [11] YAAKOV OSHMAN, F. LANDIS MARKLEY. Sequential Gyro-less Attitude and Attitude-rate Estimation from Vector Observations[C]. Acta Astronautica Vol. 46, No. 7, 2000, pp: 449-463.
    [12] Kirill S. Mostov, Andrey A. Soloviev, T.-K. John Koo. Initial Attitude Determination and Correction of Gyro-Free INS Angular Orientation on the Basis of GPS Linear Navigation Parameters[C]. Intelligent Transportation System, 2001 IEEE, 2001, 1034-1039.
    [13] Sou-Chen Lee, Yu-ChaoHuang. Innovative estimation method with likelihood for all-accelerometer type inertial navigation system[J]. 2002IEEE, 38(1):339-346.
    [14] 马澍田,陈世友,李艳梅等.无陀螺捷联惯导系统[J].航空学报, 1997,18(4):484-488.
    [15] 陈世友,李春花.无陀螺捷联惯导系统捷联方案研究[J].航空学报,1999,20(6):566-568.
    [16] 胡斌宗,周百令,赵池航.面向载体自转的无陀螺捷联惯导系统[J].中国惯性技术学报,2003,11(6):7-10.
    [17] 王劲松,王祁,孙圣和.无陀螺微惯性测量装置[J].传感器技术,2003,22(4):43-45.
    [18] 丁明理,王祁,洪亮,赵鹏.无陀螺微惯性测量单元的卡尔曼滤波方法研究[J].仪器仪表学报,2004,24(4):310-313.
    [19] 赵建伟,马澍田,陈慧.无陀螺捷联惯导系统角速度解算方法的研究.哈尔滨工程大学学报.Vol.20,No.4,1999:40-45.
    [20] 王晓沁,李永新,朱明武.全加速度计惯性测量的优化设计及仿真分析[J].弹道学报.Vol.15,No.4,2003:12-16.
    [21] 黄威,陈家斌,张延顺.光纤陀螺在航空武器装备中的应用及前景.电光与控制,2004,5.Vol.11,No.2.PP:50-53.
    [22] 董景新.微惯性仪表—微机械加速度计.清华大学出版社,2003.
    [23] Chin-Woo Tan, Sungsu Park. Design of gyroscope-free navigation systems [A].In: 2001 IEEE Intelligent Transportation Systems Conference Proceedings[C], USA: 2001 IEEE-2001:286-291.
    [24] 袁信,郑谔.捷联式惯性导航原理.航空专业教材编审组出版,1985.
    [25] 袁信,俞济祥,陈哲.导航系统.航空工业出版社,1993.12.
    [26] 周江华,苗育红,肖刚.捷联惯导系统初始四元数提取的新算法[J].飞行力学,2003,21(3):63-66.
    [27] 陈哲.捷联惯导系统原理.宇航出版社出版,1986.12.
    [28] 秦永元,张洪钺,汪叔华.卡尔曼滤波与组合导航原理.西安:西北工业大学出版社,1998.11.
    [29] Y.K. Thong, M.S. Woolfson, J.A. Crowe, et al. Numerical double integration of acceleration measurements in noise[J]. Measurement, Volume 36, Issue 1, July 2004, Pages 73-92.
    [30] Chung D, Lee J.C.. Park C.G. Strapdown INS Error Model for Multi-position alignment[J]. IEEE Trans on Aerospace and Electronic System, 1996, 32(4), pp: 1362-1366.
    [31] 中国人民解放军总装备部军事训练教材编辑工作委员会.GPS技术与应用. 国防工业出版社,2006.6.
    [32] 林敏敏,房建成,高国江.GPS/INS组合导航系统混合校正卡尔曼滤波方法[J].中国惯性技术学报,2003.11(3):29-33.
    [33] 赵霞,谢栓勤,王璿,高社生.无陀螺SINS加速度计配置与角速度解算方法研究.《弹箭与制导学报》.2005年11月,第25卷,第4期:680~683.
    [34] 杨波.低成本IMU/GPS车辆组合导航方法研究[D].西北工业大学硕士论文.西北工业大学研究生院.2005年3月.
    [35] Sungsu Park, Chin-Woo Tan, Joohyuk Park. A scheme for improving the performance of a gyroscope-free inertial measurement unit[C]. Sensors and Actuators A: Physical, Volume 121, Issue 2, 30 June 2005, Pages 410-420.
    [36] Kirill S. Mostov, Andrey A. Soloviev, T.-K. John Koo. Accelerometer Based Gyro-Free Multi-Sensor Generic Inertial Device for Automotive Applications[C]. Intelligent Transportation System, 1997. ITSC 97. IEEE Conference on9-12 Nov. 1997 Page(s): 1047-1052.
    [37] Alan H. Zorn. A Merging of System Technologies: All-Accelerometer Inertial Navigation and Gravity Gradiometry[C]. Position Location and Navigation Symposium, 2002 IEEE 15-18 April 2002 Page(s):66-73.
    [38] Ying Kun Peng, M.F. Golnaraghi. A Vector-Based Gyro-Free Inertial Navigation System by Integrating Existing Accelerometer Network in a Passenger Vehicle[C]. Position Location and Navigation Symposium. 2004, Page(s): 234-242.
    [39] Kourosh Parsa, Jorge Angeles, Arun K. Misra. Attitude Calibration of an Accelerometer Array[C]. Robotics and Automation, 2002. Proceedings. ICRA'02. IEEE International Conference on Volume 1, 11-15 May 2002 Page(s):129-134.
    [40] Huan-Jung, Lin. GPS/INS Integration without Gyro[C]. Position Location and Navigation Symposium, 2004, Page(s): 159-164.
    [41] Eun-Seok Choi, Wook Chang, Won-Chul Bang, et al. Development of the gyro-free handwriting input device based on inertial navigation system (INS) theory[C]. SICE 2004 Annual Conference. Volume 2, vol. 2, 4-6 Aug. 2004 Page(s): 1176-1181.
    [42] Tan C W, Park S, Mostov K, et al. Design of Gyroscope-Free Navigation Systems[A]. 2001 IEEE Intelligent Transportation systems conference proceedings-Oakland(CA)[C]. USA: California, 2001. 286-291.
    [43] Ying Kun Peng;Golnaraghi, M.F.. A vector-based gyro-free inertial navigation system by integrating existing accelerometer network in a passenger vehicle[C]. Position Location and Navigation Symposium, 2004, Page(s):234-242.
    [44] 以光衢等.惯性导航原理.航空工业出版社,1987,12.
    [45] 程杨,杨涤,崔祜涛.利用Singer模型的无陀螺姿态和角速度估计[J].航空学报,2002,Vol.23,No.6,pp:507-511.
    [46] 张志涌等.精通MATLAB6.5版.北京航空航天大学出版社,2003.
    [47] 付梦印,邓志红,张继伟.Kalman滤波理论及其在导航系统中的应用.科学出版社,2003.
    [48] 董绪荣,张守信,华仲春.GPS/INS组合导航定位及其应用.国防科技大学出版社,1998.
    [49] 宋桂云.陀螺仪的应用及发展[J].有色金属.2002,Vol.54,No4,PP:108-110.
    [50] 梅硕基.惯性仪器测试与数据分析.西北工业大学出版社.1991年.
    [51] 何淼,吴校生,陈文元等.磁悬浮转子微陀螺中转子微加工方法的研究.机械设计与研究.2004,Vol.20,No 3,pp:81-83.
    [52] 蔺玉亭,孙付平,朱新慧.光纤陀螺的发展及其在惯导中的应用前景.测绘工程.2005,Vol.14,No.1,pp:41-43.
    [53] Mohinder S. Grewal, Vinson D. Henderson, Randy S. Miyasako. Application of Kalman Filtering to the Calibration and Alignmem of Inertial Navigation Systems[J]. Automatic Control, 1991, Vol.36, No. 1, pp:3-13.
    [54] Immanuel Ashokaraj, Peter Silson, Antonios Tsourdos. Application of an Extended Kalman Filter to Multiple Low Cost Navigation Sensors in Wheeled Mobile Robots[C]. Sensors, 2002, Proceedings of IEEE, Volume 2, vol.2, pp: 1660-1664.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700