用户名: 密码: 验证码:
Ti_3SiC_2/SiC复相陶瓷的制备及其性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文采用热等静压原位合成技术和过渡塑性相工艺,以TH_2、SiC和石墨粉为原料,制备了不同SiC含量的Ti_3SiC_2/SiC复相陶瓷,为扩展Ti_3SiC_2的应用提供了新的思路。通过X射线衍射、光学显微分析,分析了Ti_3Sic_2/SiC复相陶瓷材料的物相组成、晶粒大小、晶粒形貌和断裂机制。通过对其密度、显微硬度、断裂韧性、摩擦磨损性能和抗氧化性能的测试,分析了Ti_3SiC_2/SiC复相陶瓷材料的性能,表明了Ti_3Sic_2/SiC复相陶瓷材料具有好的综合性能,能够作为高温结构材料。
     热等静压原位合成的SiC含量为3、4、5、7mol的Ti_3SiC_2/SiC复相陶瓷具有很好的致密度,相对密度都达到了98.5%以上。SiC含量为10mol的Ti_3SiC_2/SiC复相陶瓷由于在热等静压作用下Ti_3SiC_2不能形成连续的网络结构,不能完全致密化,相对密度只达到90.4%。
     XRD分析结果表明:Ti_3SiC_2/SiC复相陶瓷主要存在Ti_3SiC_2、SiC相和少量的TiC相。显微硬度和断裂韧性的测量结果表明:复相陶瓷的显微硬度随SiC含量的增加而增大,最大为14.1GPa。断裂韧性随SiC含量的增加而减小,最高为7.24MPa.m~(1/2)。导电性能测试结果表明:随SiC含量的增加导电率降低,试验得到的电阻率与理论计算结果吻合。
     Ti_3SiC_2/SiC复相陶瓷的摩擦磨损性能的测试在环块式试验机上进行,比较研究了在不同配副,不同载荷,不同润滑状态下的摩擦磨损行为,并对比了不同SiC含量的复相陶瓷/45号钢摩擦副在300N载荷,干摩擦条件下和500N载荷,油润滑条件下的摩擦磨损行为。Ti_3SiC_2/SiC复相陶瓷在干摩擦条件下摩擦系数较小,磨损率高。在油润滑条件下摩擦系数和磨损率都非常小。复相陶瓷的磨损主要是由于微断裂引起的。
     研究了Ti_3SiC_2/SiC复相陶瓷在不同温度,不同气氛下的氧化行为,并结合了高温原位观察和XRD,分析了复相陶瓷的氧化机理,得出:复相陶瓷的
In this paper, Ti_3SiC_2/SiC multiphase ceramics containing different contents of SiC are fabricated with TiH_2, SiC and graphite powders by in situ synthesis under hot isostatic pressing (HIP) and transient plastic phase processing(TPPP) to provide new ideal for the application of Ti_3SiC_2. Phase, grain size, grain appearance and fracture mechanism of Ti_3SiC_2/SiC composites are investigated by X-ray diffraction, optical microscope. The performances of Ti_3SiC_2/SiC composites by in situ synthesis under hot isostatic pressing (HIP) was studied via the test results on their densities, micro-hardness, fracture toughness, properties of friction and wear, and the resistance of oxidation. The research indicates that Ti_3SiC_2/SiC composites has good overall performance for high temperature structural material.Ti_3SiC_2/SiC composite samples consisting of 3,4,5,7mol SiC are full dense and the relative densities are beyond 98.5%. Ti_3SiC_2/SiC composites under HIP consisting of 10 mol SiC, In this way, Ti_3SiC_2 can not form successive net shape and be fully compact. So the relative density of sample consisting 10mol SiC only reaches 90.4%.The XRD results indicate that the major phases of Ti_3SiC_2/SiC composites are Ti_3SiC_2 and SiC, and a few TiC phases. Basically, it accords with the results designed. The results measured for micro-hardness and fracture toughness have been demonstrated that the micro-hardness of composites ceramics increases along with contents of SiC and maximum is 14.1GPa. Comparably, the fracture toughness decreases with increasing SiC and maximum is 7.24 MPam~(1/2). The conductivity of composites decreases with increasing of SiC. It is identical with result of theoretical calculation.The tests of friction and wear properties of Ti_3SiC_2/SiC composites were
    carried out using block-on-ring type testes to comparably research the friction and wear behaviors in different pairs, loads, and lubrication conditions. The friction coefficient of TljSiC^SiC composites is relatively low and wear rate is quite high during dry sliding, On the other hand, low friction coefficient and wear rate during lubricated sliding. The wear mechanism is considerably caused by micro-fracture.The oxidation behaviors of TisSiC^SiC composites with different temperatures and atmospheres have been discussed. Furthermore, the oxidation mechanism of TiaSiC^SiC composites was analyzed with in situ observation at high temperature and XRD. It is concluded that the high temperature oxidation dynamics curve of multiphase ceramics obeyed a parabolic law from 800 "C to 1400 °C .While temperature rising, the oxidation parabolic rate constantly increased. In the different atmospheres, oxidation could be related with oxide pressure. In the same case, oxidation mass gain rises with increasing the oxide pressure. Comparing the oxidation behaviors of TiaSiC^SiC composites with different SiC at 1200 °C, the growth of the oxide scale on TbSiC^SiC composites per area decreases with increasing in the contents of SiC. It is demonstrated that the oxidation resistance property of all Ti3SiC2/SiC composites is better than that of pure Ti3SiC2. The calculated activation energies of 7SiC and 3SiC composites are 2O8.129KJ.mor1 and 219.5 KJ.mol"1 respectively, and less than activation energy of pure Ti3SiC2. The oxide scale composed of TiO2, SiO2 grains and amorphous SiO2 can hinder the diffusion process, and results in good oxidation resistance.
引文
1. M. W. Barsoum. The M_(N+1)AX_N Phases: A New Class of Solids; Thermodynamically Stable Nanolaminates. Prog Solid St Chem. 2000, 28: 201-281
    2. Jeitschko W, Nowotny H. Die Kristallstruktur von Ti_3SiC_2-cinneuer Komplexcarbid Type. M h Chem. 1967, 98(2): 329-337
    3.李世波,成来飞,王东,张立同.层状Ti_3SiC_2陶瓷的组织结构及力学性能 复合材料学报.2002,19(6):20-25
    4. Kisi E K, Crossley J A A, Myhra S, et al. Structure and Crystal-chemistry of Ti_3SiC_2. J. Phys. Che. Sol. 1998, 59: 1437-1443
    5. Goto T, Horai T. Chemically Vapor Deposited Ti_3SiC_2. Mat. Res. Bull. 1987, 22: 1195
    6. Pampuch R, Lis J, Stobierski L, et al. Solid Combustion Synthesis of Ti_3SiC_2. J Eur Ceram Soc. 1989, 5: 283
    7. Lis J, Pampuch R, Stobierski L, et al. Sinterable Ceramic Powders Prepared by SHS, Their Densifications and Final Products. Trans. Mater. Res. Soc. 1994, 14A: 603-608
    8. Lis J, Miyamoto, Y., Pampuch R, et al. Ti_3SiC_2-based materials prepared by HIP-SHS technique. Mater. Lett. 1995, 22, 163-168
    9. Michel W. Barsoum and Tamer El-Raghy, Synthesis and Characterization of a Remaarkable Ceramic: Ti_3SiC_2. J. Am. Ceram Soc. 1996, 79(7): 1953-56
    10. R. Radhakrishnan, J. J. Williams, M. Akinc, Sythesis and High-temperature Stability of Ti_3SiC_2. [J] Journal of Alloys and Compounds 1999, 285: 85-88
    11. N. F. Gao, Y. Miyarnoto, D. Zhang. Dense Ti_3SiC_2 prepared by reactive HIP,[J] J. Mater. Sci. 1999, 34: 4385-4392
    12. Z. M. Sun, Y. Zhang, Y. C. Zhou, Synthesis of Ti_3SiC_2 Powders by a Solid-Liquid Reaction Process. scipat Materialia. 1999, 41: 61-66
    13. Zhu Jiao-qun, Mei Bing-chu, He Li-ping. Synthesis of Ti_3SiC_2 by spark plasma sintering(SPS) of elemental powders. Trans. Nonferrous Met. Soc. China 2003, 13(1): 46-49
    14. Sowmya. Arunajatesan, Altaf. H. Carim. Synthesis of Titanium Silicon Carbide.[J] J. Am. Ceram. Soc. 1995, 78(3): 667-672
    15. Racault C, Langlais F, Bernard C. On the Chemical Vapor Deposition of Ti_3SiC_2 from TiCl4-SiCl4-CH4-H2 Gas Mixtures: Part Ⅱ an experimental approach. J. Mater. Sci. 1994, 29: 5023
    16.瞿洪祥,汪长安.Ti_3SiC_2材料在受电弓滑板中的应用研究.[J]机车电传动,2003年增刊
    17.朱教群.三元层状碳化物Ti_3SiC_2的制备及性能研究.武汉理工大学博士学报论文.2003年5月:78
    18.章为夷,高宏.可加工陶瓷的结构、性能和制备.人工晶体学报2005,34(1):169-173
    19. M. W. Barsoum and Tamer El-Raghy: Synthesis and Characterization of a Remarkable Ceramic: Ti_3SiC_2, J. Am. Ceram. Soc. 1996, 79(7): 1953-56
    20. C. Racault, F. Langlais, R. Naslain. Solid-state Synthesis and Characterization of the Ternary Phase Ti_3SiC_2. J. Mater. Sci. 29(1994) 3384-3392.
    21. Barsoum M W, El-Raghy T, Ogbuji L. Oxidation of Ti_3SiC_2 in Air. J Electrochem Soc. 1997, 144: 2508
    22. Zhimei Sun, Yanchun Zhou, Meishuan Li. Oxidation Behaviour of Ti_3SiC_2—based Ceramic at 900-1300℃ in Air. Corrosion Science. 2001, 43: 1095-1109.
    23.刘光明,李美栓,周延春等Ti_3SiC_2在900℃与1000℃下的热腐蚀行为[J]金属学报 2002,38(4):417-420
    24. Tong X, Okano T, Iseki T, et al. Synthesis and High Temperature Mechanical Properties of Ti_3SiC_2/SiC CompositeJ Mat Sci. 1995, 30: 3087-3090
    25.刘光明,李美栓,张亚明等,Ti_3SiC_2表面渗硅涂层的抗高温氧化性能.中国有色金属学报.2002,12(4):629—633.
    26. C. Racult, F. Langlais, and R. Nasain. Solid State Synthesis and Characterization of the Ternary Phase Ti_3SiC_2 J. Mater. Sci.. 1994, 29, 3384-92
    27. X. Tong, T. Okano, T. Iseki, and T. Yano, Synthesis and High Temperature Mechanical Properties of Ti_3SiC_2/SiC Composites. J. Mater. Sci. 1995, 30: 3078
    28. M. W. Barsoum, Tamer El-Raghy. Synthesis and Characterization of a Remarkable Ceramic: Ti_3SiC_2. J. Am. Ceram. Soc. 1996, 79(7): 1953-1956
    29. R. Radhakrislman, J. J. Williams, M. Akinc. Synthesis and High-temperature Stability of Ti_3SiC_2. Journal of Alloys and Compounds. 1999, 285: 85-88
    30. M. W. Barsoum and Tamer El-Raghy: Synthesis and Characterization of a Remarkable Ceramic: Ti_3SiC_2. J. Am. Ceram. Soc. 1996, 79(7): 1953-56
    31. Tamer El-Raghy, Michel. W. Barsoum, Antonios. Zavaliangos. Processing and Mechanical Properties of Ti_3SiC_2: Ⅱ, Effect of Grain Size and Deformation Temperature. J. Am. Ceram. Soc. 1999, 82(10): 2855-60
    32.刘家浚.材料磨损原理及其耐磨性.清华大学出版社,1993:273
    33.石淼森.固体润滑材料.化学工业出版社,2000:276-281
    34. Boch P, Platon F, Kapelski G Effect of Temperature and Environment on Wear and Friction of Al_2O_3 and SiC Ceramics. Proc 5th Int Congr Tribol. Helsinki, Finland: the International Tribology Council and the Finish Society for Tribology, 1989: 114.
    35.肖汉宁,千田哲也.碳化硅陶瓷的高温摩擦磨损及机理分析.硅酸盐学报.1997,25(2):157-161.
    36. Myhra S., Summers J. W. B, Kisi E. H. Ti_3SiC_2-A layered Ceramic Exhibiting Ultra-low Friction. Materials Letters. 1999, 39: 6-11
    37. Barsoum M W, El-Raghy T. Synthesis Characterization of a Remarkable CeramicTi_3SiC_2. J. Amer. Cer. Soc. 1996, 79: 1953-1956
    38. Tamer El-Raghy, Peter Blau, Michel W. Barsoum. Effect of Grain Size on Friction and Wear Behavior of Ti_3SiC_2. Wear 2000, 238: 125-130
    39. Sun Zhi-mei, Zhou Yan-Chun. Tribological Behavior of Ti_3SiC_2-based Material. J Mater. Sci. Technol. 2002, 18(2): 68-71
    40.王轶凡,瞿洪祥,黄振莺.不同纯度Ti_3SiC_2的摩擦磨损行为.北京交通大学学报2005,29(1):95-97
    41. Huang Zhen-ying, Zhai Hong-xiang, Zhou Wei. High-speed Friction and Wear Behaviors of Bulk Ti_3SiC_2. Trans. Nonferrous Met. Soc. China. 2005, 15(2): 266-269
    42. F. Xiong, R. Manory, L. Ward, M. Rerhcci. Effect of Grain Size and Test Configuration on the Wear Behavior of Alumina J. Am. Ceram. Soc. 1997, 80: 1310-1312.
    43. Y. Hc, L. Winnubst, A. Burggraaf, H. Verweij. Grain Size Dependence of Sliding Wear in Tetragonal Zirconia Polycrystals. J. Am. Ceram. Soc. 1996, 79: 3090-3096.
    44. A. K. Mukhopadhay, Y. M. May. Grain Size Effect on Abrasive Wear Mechanisms in Alumina Ceramics. Wear 1993, 258: 162-164.
    45. C. He, Y. S. Wang, J. S. Wallace, S. M. Hsu, Effect of Microstructure on the Wear Transition of Zirconia Toughened Alumina. Wear. 1993, 314: 162-164
    46. K. H. Zum Gahr, W. Bundschuh, B. Zimmerlin. Effect of Grain Size on Friction and Sliding Wear of Oxide Ceramics. Wear. 1993, 269: 162-164
    47. T. Hisakado, Wear Mechanism of Ceramics and Surface Topography. J. Tribol. 1986, 108(9)
    48.甘国友,陈敬超,孙加林Ti-Si-C三元系化学势稳定性相图及其应用昆明理工大学学报 2002,27(1):34-37
    49. Michel W. Barsoum, Boen Houng, Transient Plastic Phase Processing of Titanium-Boron-Carbon Composites J. Am. Ceram. Soc. 1993, 76(6): 1445
    50.张国军,金宗哲.原位合成复相陶瓷概述.材料导报 1996,2:62-65
    51. Zhu Degui, Liu Shikai, Yin Xiangdong, et al. In-situ HIP Synthesis of TtB_2/SiC Ceramic Composites. Journal of Materials Processing Technology. 1999: 457-461
    52.蒋军,朱德贵,王良辉 热等静压原位合成TiB_2-TiC_x复相陶瓷材料 西南交通大学学报 2004,39(1):131-134
    53.孙红亮,朱德贵原位合成TiB_2-TiC_x复相陶瓷的显微组织 陶瓷学报 2005,26(3)158-162
    54.范强Ti_3SiC_2/SiC复合材料的制备、结构和性能的研究 西安建筑科技大学学位论文 2003年6月:34
    55.郭瑞松,蔡舒,季惠明 工程结构陶瓷 天津大学出版社 2002:89-90
    56.杨于兴,漆睿,X射线衍射分析 上海交通大学 1989:120
    57.陶瓷材料力学性能导论 Dayid J.Green著,龚江宏 译 清华大学出版社 2003:171
    58.四川五局编写组.金属材料机械性能测试。国防工业出版社,1983:125
    59.杨迪,杨辉其,周培贤等.金属硬度试验.北京:计量出版社,1983:5-6
    60.姚启均编.金属硬度试验数据手册.机械工业出版社.1992:3
    61.蒋军 热等静压原位合成TiB_2-TiC_x复相陶瓷材料 西南交通大学硕士学位论文 2003年1月:1-46
    62.朱教群,梅炳初,陈艳林.放电等离子烧结制备Ti_3SiC_2相形成机理研究.武汉理工大学学报,2003,25(4):32
    63.余继红,江东亮,谭寿洪.碳化硅陶瓷的热等静压烧结.硅酸盐学报1997,25(4):395-340
    64.武七德,郭兵健,鄢永高以单质Si、C原料制备反应烧结碳化硅的研究 武汉理工大学学报.2003,25(4):1-4
    65.刘俊,梅炳初,朱教群.Ti_3SiC_2陶瓷的制备及性能研究,江苏陶瓷2003,36(3):9-11
    66. El-Raghy T, Antonios Zavaliangos, Michel WBarsoum. Damage Mech-anisms Around Hardness indentations in Ti_3SiC_2. J Am Ceram Soc. 1997, 80(2): 513~516
    67. Barsoum MW, El-Raghy T. Room-temperature Ductile Carbides. Metall And Mater Trans. 1999, 30A(2): 363
    68. Leonid Faroer, Michel W Barsaum, Antonios Zavaliangos. Dislocations and Stacking Faults in Ti_3SiC_2. J Am Ceram Soc. 1998, 81(6): 1677~1681
    69.龚江宏 陶瓷材料断裂力学 清华大学出版社 2001:142-143
    70. Linh H. Ho-Duc, Tamer El-Raghy, Michel W. Barsoum, Synthesis and Chacterization of 0.3V_f TiC-Ti_3SiC_2 and 0.3V_f SiC-Ti_3SiC_2 Composites. Journal of Alloys and Compounds 350(2003) 303-312.
    71.黄培云主编,粉末冶金原理,冶金工业出版社,1982:393-394
    72.张健 直接氧化法制备Al_2O_3/Al复合材料的摩擦磨损性能研究西南交通大学硕士学位论文 1996年1月:75-78
    73.赵明,黄莉萍,丁传贤.Sialon,Al_2O_3和SiC自配对干摩擦研究.无机材料学报.1997,12(1):79-85
    74.赵兴中,刘家浚,朱宝亮.陶瓷的润滑问题.材料研究学报 1995,9(5):420-426
    75. T. Narushima, T. Goto, Y Yokoyama, M. Takeuchi, Y Iguchi, and T. Hirai. Active-to Passive Transition and Bubble Formation for. High-Temperature Oxidation of Chenucally Vapor-Deposited Silicon Carbide in CO-CO_2 Atmosphere. J. Am. Ceram. Soc., 1994, 77(4): 1079-82.
    76.潘牧,南策文.碳化硅(SiC)基材料的高温氧化和腐蚀.腐蚀科学与防护技术,2000,12(2)
    77. V. Pareek and A. Shores. Oxidation of Silicon Carbide in Environments Containing Potassium Salt Vapor, J. Am. Ceram. Soc., 1991, 77(4) 556-63.
    78. K. L. Luthra. Some New Perspectives on Oxidation of Silicon Carbide and Silicon Nitride. J. Am. Ceram. Soc., 1991, 74(5): 1095-1010.
    79. L. Filipuzzi, R. Naslain, and C. Jaussaud. Oxidation Kinetics of SiC Deposited from CH_3SiCl_3/H_2 under CVI-Conditions. J. Mater. Sci., 1992, 27: 3330-3334.
    80.孙红亮.原位合成TiB_2-TiC_x陶瓷及其氧化性能研究.西南交通大学硕士学位论 文.2005年6月:43-45
    81.赵学庄 化学反应动力学原理.高等教育出版社,1984
    82.许崇海,艾兴SiC和Ti(C,N)双相弥散陶瓷复合材料的氧化性能.陶瓷学报.2000,21(4):190-194.
    83.常春,陈传忠,孙文成SiC的高温抗氧化性分析.山东大学学报.2002,32(6):581-585.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700