用户名: 密码: 验证码:
300MW锅炉汽包应力分析与裂纹计算
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着电网容量增大和用电结构的变化,电网峰谷差日益增加,一大批高参数、大容量的火力发电机组不得不参加变负荷甚至启停调峰运行。参与调峰的机组里面特别是高参数、大容量的锅炉汽包直径和壁厚都比较大,在机组启停和变负荷过程中,尤其是机组事故情况下,较快的升压、降压速度和温度变化会使汽包材料所承受的机械应力和热应力发生很大的变化,而频繁交变的机械应力和热应力将使金属材料产生的疲劳损伤增大,缩短锅炉汽包的使用寿命。为此,人们高度重视并积极开展了锅炉汽包的相关研究工作。其中,计算锅炉汽包的瞬态温度场和瞬态应力场分布,以及在此基础上进行汽包裂纹的扩展计算与预测,对于确保汽包的安全运行具有直接的指导意义。
     本文以株洲电厂300MW锅炉汽包作为研究对象,在获得试验数据的基础上,对该汽包的瞬态温度场、瞬态应力场、强度计算和裂纹扩展预测等方面开展了多学科的交叉研究。文章主要从以下几个方面进行了探讨。
     首先,本文建立了含下降管和封头的锅炉汽包的整体计算模型,并计算了汽包吊带和自重对汽包应力的影响。通过对计算结果进行对比分析以后确定了汽包的计算模型,然后利用采集的数据作为计算的边界条件,采用三维有限元理论,运用国际通用大型温度场、结构分析软件ANSYS,计算了该模型下汽包的瞬态温度场、热应力、机械应力、总应力(热和机械的耦合应力)。
     其次,通过对计算结果的分析,找出了汽包应力最大值的位置,求出了危险点机械应力和总应力与蒸汽压力的比例关系,并对各工况的应力进行了综合比较。
     论文最后运用ANSYS计算的σ_(eqv)并结合断裂力学的半椭圆形表面裂纹公式和COD法计算了危险区域不同长度裂纹的断裂强度因子随时间的变化,并根据材料的断裂韧性确定了裂纹的临界尺寸。
     本文创新点为:以现场试验数据和事故情况采集的数据作为汽包应力、裂纹计算的基础,特别是对汽包温度进行了准确测量,把汽包水位的变化也加以一并考虑,避免了以往因数学模型的边界条件失真而带来的计算结果的欠准确性:首次采用节点耦合模型计算了吊带对锅炉汽包机械应力和热应力的影响;汁算了汽包运行时的温度场、应力场以及它们的变化规律;计算了汽包最危险
Along with the increase of electric power plant capacity and the change of power consumption, the peak-valley difference of electrical network increases day by day, a lot of thermoelectricity generator units with high running parameters and large capacity have to take part in changing the loads and even to startup-halt for adjusting the peak output. The diameter and wall thickness of the boiler drum is relative big. During the process of starting or stopping and altering loads, especially under the accident, the pressure rising or dropping and temperature varying will make mechanical and thermal stress of the drum greatly change. The varying of the stress will result in fatigue damage to drum material and shorten the service life of the drum. For this reason, people had paid great attention to this and a lot of research work about drum was carried out. Among these work, the distribution of transient temperature field and stress field, the calculation and prediction of crack propagating are significant to ensure boiler in good condition and safety running.The thesis takes 300MW boiler drum of Zhuzhou Power Plant as object. Based on test data, the multi-disciplinary research across transient temperature field, transient stress field, predicting crack propagating etc was carried out. The thesis mainly carried on the discussion in the followed respects.Firstly, author built a calculating model with drop pipe, end cover of the drum, and calculated the effect by hanging strip and gravity of the drum to the stress field. The model was completed after comparing and analyzing the result of calculation. Then utilized the test data as border condition of the model. The three-dimensional finite element unit was adopted; ANSYS software were used and the transient temperature field, thermal stress, mechanical stress, total stress of the drum were calculated to the model.Secondly, the position of maximum stress of the drum was found out through the analysis of calculating result, some proportionate regulation between mechanical stresses or total stresses and steam pressure also found out. The results were compared synthetically to the different operating mode.Finally, the change of crack strength factors to cracks which have different
    length size in dangerous area was calculate and compared with that it was calculated by use of half oval surface crack formula. The COD method was applied and the critical size of crack was defined according to the fracture toughness of the material by Von misses stress calculated.The innovation in this thesis are as follows:1. The running parameters and test data of the drum during typical and accident operation was used as boundary condition for stress calculating and crack analyzing. Especially accurate measurement to the temperature of drum and considered the change of the water level in the drum were carried on, which have avoided the error owing of the distortion of border condition.2. Adopted the nodal coupling model to calculate the machinery stress and thermal stress of the drum to make sure the effect by the hanging strip for the first time.3. Calculated transient temperature and stress field and varying regularity underchanges load varying and other disturbance.4. Found out the position of maximal total stress and dangerous point in the drum. Calculated the critical size of crack and the yearly crack-propagating value at the point. This is important for periodicity checking and the treatment to cracks appeared in the drum.
引文
[1] 王勇.电厂锅炉汽包低周疲劳寿命评价技术及压力管道结构分析研究:[博士学位论文].浙江:浙江大学材料化工学院,2002
    [2] 雷定威.锅炉汽包裂纹处理方法研究.湖南电力,1997.(2):1~6
    [3] 沈月芬,贾鸿祥.国产125MW锅炉汽包疲劳寿命计算.锅炉技术,1985.(8):1~12
    [4] 程丰渊,梁剑平.调峰机组锅炉汽包的强度计算.锅炉制造,1982.(5~6):26~55
    [5] 郑思定,盛建国.调峰机组锅炉汽包壁温度场和热应力分析和低周疲劳设计.动力工程,1988.8(6):18~25
    [6] 邓文俭,1025t/h自然循环锅炉汽包的温度场和疲劳寿命损耗.华北电力技术,1994.(9):13~16
    [7] 沈月芬,曹子栋,李斌等.锅炉汽包管接头组合结构的温度分布二维有限元分析.西安交通大学学报,1995(05):100~105
    [8] Zhao Tiecheng, Shen Yuefen, Zhu Guozhen, etal. Temperature field calculation of boiler drum-finite element analysis of 3-D unsteady variable character uneven material heat conduction problem. Zhongguo Dianji Gongcheng Xuebao/Proceedings of the Chinese Society of Electrical Engineering v 17 n 4 July 1997: 217~220
    [9] 商福民,吕邦泰,庞立平.锅炉汽包壁上下温差热应力有限元分析.华北电力大学学报,1999,26(01):52~56
    [10] Taler J, Weglowski B, Zima W, etal. Analysis of thermal stresses in a boiler drum during start-up. Journal of Pressure Vessel Technology. Transactions of the ASME, 1999. 121(1): 84~93
    [11] Isreb M. Superheater minimum stress unit start-up option of coal-fired power plants Computers and Structures, 1997. 62(5): 865~875
    [12] Kim T. S., Lee, D.K.; Ro, S.T. Analysis of thermal stress evolution in the steam drum during start-up of a heat recovery steam generator. Applied Thermal Engineering, 2000. 20(11): 977~992
    [13] 师俊平,李蹊,刘协会.汽包在复杂载荷作用下的应力分析.机械科学与技术,1997.16(2):240~244
    [14] 赵铁成,沈月芬,梁艳明等.电站锅炉锅筒内压应力三维有限元分析.中国电机工程学报,1999.19(01):31~33
    [15] 邓文俭,李林.300MW仿真机组锅炉汽包温度场及疲劳寿命损耗的数学模型.山东电力技术,1995.1:73~79
    [16] 阎顺林,吕邦泰,李永华.锅炉汽包封头的不稳定温度场及应力场的有限元分析.华北电力大学学报(自然科学版),1994.(01):62~67
    [17] 高庆.工程断裂力学.重庆:重庆大学出版社,1986.2~3
    [18] 吴清可.防断裂设计.北京.机械工业出版社,1991.1~2
    [19] 李庆芬,胡胜海,朱世范.断裂力学及其工程应用.哈尔滨:哈尔滨工程大学出版社,2005.1~15
    [20] 金术杰.锅炉汽包的焊接裂纹成因分析及返修.无损探伤,2003.27(6):47~48
    [21] 高金成.300MW机组锅炉锅筒下降管焊接裂纹的分析和研究.电站系统工程,1995.11(5):42~47
    [22] 陈付元.下降管管座裂纹的检测分析与处理.华东电力,1995.11:41~42
    [23] 王士能.锅炉汽包开孔内壁处裂纹分析和修复.理化检验-物理分册,2000.36(5):220~222
    [24] 赵亚新,董强,黄达等.锅炉汽包开孔处的裂纹分析和修复.压力容器,1998.15(3):80~82
    [25] 梁艳明,沈月芬,梅清理.锅炉汽包下降管区域三维有限元应力集中分析.西安交通大学学报,1999.(07):41~45
    [26] 陆怀民.电站锅炉蒸汽导管热弹塑性蠕变有限元分析.动力工程,2001.26(06):1481~1485
    [27] 张伟,张圣坤,崔维成等.厚壁筒内表面椭圆裂纹的应力强度因子研究.船舶力学,1999.3(04):49~53
    [28] 方志民,柴国钟.三维线弹性断裂分析的混合边界元法.浙江工业大学学报,1994.(03):7~17
    [29] Smith F W. The surface Crack: Physical Problems and Computational Solution. ASME, 1972
    [30] 周志宏,王波,姚振汉.非匀速动态裂纹应力强度因子的边界元算法.清华大学学报(自然科学版),1999.39(11):42~45
    [31] Ingraffea A R, Blandford G, Liggerr J A. Automatic modeling of mixed-mode fatigue and quasi static carck propagation using the boundary element method [A]. 14th National Symposium on Fracture[C]. ASTM STP 791, 1987.
    [32] 李强,王波,李存铮等.T型焊接接头中疲劳裂纹扩展的三维边界元模拟.清华大学学报(自然科学版),2002.42(04):470~473
    [33] 刘云忠.边界元法计算厚板表面裂纹问题的应力强度因子.固体火箭技术,1996.19(03):64~70
    [34] Colombo, P.P., Garzillo, A., Meriggi, M. etal. Creep and damage analysis of a serviced tee intersection in a boiler header: comparison between numerical and experimental results. International Journal of Pressure Vessels and Piping, 1996. 66(1-3): 243~251
    [35] Yoshimura, S.; Lee, J.-S.; Yagawa, G. Journal of Pressure Vessel Technology, Transactions of the ASME v 119 n 1 Feb 1997: 18~26
    [36] Shirmohamadi, Manuchehr; Wang, Victor; Kwon. etal, Fracture, and High Temperature Design Methods in Pressure Vessels and Piping American Society of Mechanical Engineers, Pressure Vessels and Piping Division (Publication) PVP v 365 1998. ASME, Fairfield, NJ, USA: 375~380
    [37] Livingston, B.; Saunders, K.L. Coke drums failure prediction evaluation using probabilistic techniques Component Analysis and Evaluation, Aging and Maintenance, and Pipe Supports American Society of Mechanical Engineers, Pressure Vessels and Piping Division (Publication) PVP v 376 1998. ASME, Fairfield, NJ, USA.: 33~37
    [38] R. Viswanathan Life Management of High-Temperature Piping and Tubing in Fossil Power Plants Journal of Pressure Vessel Technology. 2000. 122(3).: 305~316
    [39] Takashi Ogata and Masatsugu Yaguchi Study on Creep-Fatigue Damage Evaluation for Boiler Weldment Parts Journal of Pressure Vessel Technology, 2001. 123(1). 105~111
    [40] Marvin J. Cohn, The TransAlta High-Energy Piping Program—A Five-Year History, Journal of Pressure Vessel Technology, 2001. 123(1).: 65~69
    [41] Plotkin, E.R.; Zinger, N.M. Temperature stress concentration in branch pipes of power boiler drums N.M. Teploenergetika n 2 Feb 1997: 69~73
    [42] 李建国.压力容器设计的力学基础及其标准应用.北京:机械工业出版社,2004.68~71
    [43] 杨桂通.弹塑性力学引论.北京:清华大学出版社,2004.89~90
    [44] 徐秉业,刘信声.应用弹塑性力学.北京:清华大学出版社,2003.188~191
    [45] S.S.Rao. The Finite Element Method in Engineering. UK: Pergamon Press. 1982. 21~30
    [46] 姚端正,梁家宝.数学物理方法.武汉:武汉大学出版社,1996.307~309
    [47] 刘春晓.催化/热障功能梯度涂层的建模、仿真与试验研究:[硕士学位论文].武汉:武汉理工大学能源与动力工程学院,2003
    [48] 唐兴伦,范群波,张朝晖等.ANSYS工程应用教程(热与电磁学篇).北京:中国铁道出版社,2003.79~80
    [49] 肖纪美.金属的韧性与韧化.上海:上海科学技术出版社,1982.103~106
    [50] 褚武杨.断裂力学基础.北京:科学出版社,1979.89~95
    [51] 尹奇志.液化气容器的瞬态应力分析及失效机理仿真:[硕士学位论文].武汉:武汉理工大学能源与动力工程学院,2002
    [52] 压力容器协会,化工机械与自动化协会.压力容器评定规范.1984
    [53] 沈成康.断裂力学.上海:同济大学出版社.1995.190~202
    [54] 中国航空研究院.应力强度因子手册.北京:科学出版社,1993
    [55] 田力男.发电厂含裂纹部件带裂运行的安全性评定.内蒙古电力技术.2001.02(19):40~42
    [56] 王仁东.断裂力学理论和应用.北京.化学工业出版社,1984,195~200

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700