用户名: 密码: 验证码:
随州古银杏遗传多样性的RAPD及ISSR分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
银杏(Ginkgo biloba L. )属银杏科银杏属,为中生代第四纪冰川期的孓遗植物,有“活化石”之称。我国是银杏的原产地,许多地方有规模不等的银杏古树,湖北随州就是我国主要的银杏古树集中分布区之一。本研究采集随州121株古银杏的叶片样品和30株古银杏的种子样品为研究样本,利用RAPD和ISSR分子标记技术,从群体和个体2个层次,对随州古银杏的遗传多样性进行了分析研究。主要结果如下:
     (1) 用9条RAPD引物和9条ISSR引物分别对随州大洪山区7个群体共121株古银杏的叶片DNA进行扩增,分别得到104条和107条清晰的扩增谱带,其中多态性带分别为103条和105条,多态性条带百分率(PPB)分别为99.04%和98.13%。RAPD所揭示的古银杏遗传多样性无论是物种水平(H_E=0.3241,H_O=0.4887)还是群体水平(H_E=0.2302,H_O=0.3440)均与ISSR分析所得的结果(物种水平:H_E=0.2516,H_O=0.3913;群体水平:H_E=0.1775,H_O=0.2697)相近。由RAPD所得的遗传一致度和由ISSR所得的遗传一致度之间的相关系数r=0.6932>r_(0.01)(P=99.65%),两者的相关性达到极显著水平。
     (2) 依据RAPD和ISSR实验数据,对古银杏群体进行Nei's遗传多样性分析和AMOVA分析,揭示出随州古银杏群体间遗传分化水平。RAPD结果揭示出大洪山区7个群体的G_(ST)=0.2896,φ_(ST)=24.22%;ISSR结果揭示出这7个群体的G_(ST)=0.2944,φ_(ST)=23.12%。将桐柏山区的草店群体考虑在内,则遗传分化值更高,G_(ST)=0.3380,φ_(ST)=32.05%。
     (3) 分别依据古银杏叶片样品的RAPD和ISSR标记数据,进行了群体和单株聚类分析。8个群体共129个单株的UPGMA聚类分析显示,来自同一群体的个体基本上都能各自聚在一起,表明各银杏群体间已有相当程度的遗传分化,特别是草店群体,与其它7个群体之间的分化程度最高,表现出明显的地区性差异,而群体聚类结果并没有表现出地域差异。群体间一定程度的遗传分化可能是人类生产活动和基因流障碍引起的。
     (4) 从选出的9条ISSR引物中,再次挑选6条扩增谱带较多的ISSR引物,对30株古银杏的150粒种子的胚乳DNA进行ISSR分析,以分析随州古银杏在个体水平上的遗传多样性。共扩增出91条ISSR谱带,从单倍体水平和二倍体水平统计的多态性条带分别为90条和64条,多态性条带百分率分别为98.90%和70.33%。检测出的平均杂合位点有39个,平均杂合率为43.53%,杂合率最高的古银杏个体达到54.95%,最低的也有34.07%,显示出该地银杏古树的杂合程度都比较高。古银杏在个体水平的平均遗传多样性为H_E=0.1617、H_O=0.2393。古银杏单株间的遗
Ginkgo biloba L., a "living fossil" belonging to Ginkgoaceae and Ginkgo, is one of the oldest remained tree species. China is the native land of Ginkgo biloba and there are lots of ancient Ginkgo trees in many places in the country. Suizhou of Hubei Province is one of the main concentrated distribution regions of ancient Ginkgo trees. In this paper, we collected leaf samples from 121 ancient Ginkgo trees and seed samples from 30 ancient Ginkgo trees in Suizhou as research samples, analyzed the genetic diversity of ancient Ginkgo trees in Suizhou at population level and individual level by applying RAPD and ISSR molecular markers. Major results are as follows:(1) A total of 104 bands (including 103 polymorphic bands) were amplified using 9 RAPD primers and a total of 107 bands (including 105 polymorphic bands) were amplified using 9 ISSR primers, which were based on the DNA of those 121 Ginkgo individuals of 7 populations. The percentage of polymorphic bands (PPB) were 99.04% for RAPD and 98.13% for ISSR respectively. The genetic diversity of Ginkgo at species level (H_E = 0.3241, H_O= 0.4887) and population level (H_E = 0.2302, H_O = 0.3440) revealed by RAPD were both similar to those by ISSR (species level: H_E=0.2516, H_O= 0.3913; population level: H_E=0.1775, H_O=0.2697). Correlation coefficient between the genetic identity based on RAPD and that based on ISSR was 0.6932 (P=99.65%) and was significant.(2) Genetic differentiation among the ancient Ginkgo populations in Suizhou was revealed by Nei's genetic diversity analysis and AMOVA (Analysis of Molecular Variance) based on RAPD and ISSR experiment data. The RAPD results revealed that for the 7 polulations of ancient Ginkgo trees in the Dahong Mountain region, G_ST=0.2896,φ_ST= 24.22%; while ISSR results revealed that G_ST=0.2944, φ_ST = 23.12%. The genetic differentiation value was even higher when the Caodian population was concerned: G_ST=0.3380, φ_ST=32.05%.(3) According to the data of RAPD and ISSR molecular markers of the leaf samples, UPGMA cluster was made at population level and individual level. The clustering analysis of the 129 ancient Ginkgo individuals of 8 populations at individual level showed that most individuals from a same population could be clustered together in the
    dendrogram of genetic relationship. It showed that there was great genetic differentiation among these populations. In particular, the genetic differentiation between Caodian population and other populations was the highest and the regional difference was distinct. But this difference was not so obvious in the dendrogram at population level. The genetic differentiation among populations might be caused by human production activities and barriers to gene flow.(4) Six ISSR primers which could amplify more bands were screened out secondly from those 9 polymorphic ISSR primers. These effective primers were used to analyze the genetic diversity of 150 seeds samples of 30 ancient Ginkgo trees at individual level. As a result, 91 bands were generated, of which polymorphic bands was 90 based on haploid data and 64 based on diploid data, the percentage of polymorphism bands were 98.90% and 70.33% respectively. Heterozygosity test showed that the average number of heterozygous loci was 39 and the average heterozygosity was 43.53%. The highest heterozygosity was 54.95%, and the lowest was 34.07%. These results indicated that high heterozygosity existed in the ancient Ginkgo trees in Suizhou. Genetic diversity at individual level was: He=0.1617, #0=0.2393. GSt and ?&St among the 30 Ginkgo individuals were 0.4111 and 25.65% respectively. Among the 3 seed nucleus types, Gst was 0.0674, and ?&st was 4.82%.(5) According to the amplification results with the 6 ISSR primers to the 30 ancient Ginkgo individuals, similar but not exactly the same dendrograms were generated through molecular genetic clustering at haploid level and diploid level. The former based on haploid level was more accurate than the latter based on diploid level, so the former was more credible than the latter. The result of genetic dendrogram was different from conventional classification based on seed nucleus morphological characteristics. As the genetic relationship among the Ginkgo individuals based on DNA was more accurate, it is necessary to use both molecular markers and morphological markers to classify or identify the Ginkgo types or varieties.
引文
1.陈灵芝主编.中国的生物多样性—现状及其保护对策.北京:科学出版社,1993
    2.陈灵芝,马克平主编.生物多样性科学:原理与实践.上海:上海科学技术出版社,2001
    3.华丽,潘伯荣.遗传多样性透视.干旱区研究,2003,20(1):27-31
    4.王献溥,刘玉凯编著.生物多样性的理论与实践.北京:中国环境科学出版社,1994
    5.陈宜瑜主编.中国生物多样性保护与研究进展.北京:气象出版社,2004
    6.毛健民,李俐俐.DNA分子标记及其在作物遗传育种中的应用.周口师范高等专科学校学报,2001,18(5):49-51
    7.王志林,赵树进,吴新荣.分子标记技术及其发展.生命的化学,2001,21(4):39-42
    8.车永和.几种代表性分子标记技术.江苏农业科学,2003,(2):3-5
    9.黄德娟,李素云等.两种重要的分子标记——RFLP和RAPD.抚州师专学报(自科版),1999,(3):49-53
    10.萧顺元,章文才.RFLP在柑桔遗传多样性研究上的应用.果树科学,1995,12(1):1-4
    11.杨英军,李学强,张国海等.RAPD的原理及操作.洛阳农业高等专科学校学报,1999,19(3):27-30
    12.黄发新,张新叶,黄国泉等.林木遗传图谱中的遗传标记.湖北林业科技,2000,4:15-18
    13.姜自锋,林乃铨,徐梅.RAPD技术及其应用中的一些问题.福建农林大学学报(自然科学版),2002,31(3):356-360
    14.刘益娟,朱荣升,胡传伟,任善茂,宋成义,经荣斌等.RAPD技术及其应用的现状.Lives and poultry Industry,2002,(2):6
    15.张党权.香榧主要栽培品种的RAPD分子鉴别.[硕士学位论文].长沙:中南林学院图书馆,2001
    16.高捍东,黄宝龙.板栗主要栽培品种的分子鉴别.林业科学,2001,37(1):64-71
    17.汪小全,邹喻苹,张大明等.银杉遗传多样性的RAPD分析.中国科学(C辑),1996,26(5):436-441
    18.汪小全,邹喻苹,张大明,张志宪,洪德元.RAPD应用于遗传多样性和系统学研究中的问题.植物学报,1996,38(12):954-962
    19.恽锐,钟敏,王洪新,魏伟,胡志昂,钱迎倩.北京东灵山辽东栎种群DNA多样性的研究.植物学报,1998,40(2):169-175
    20.李春香,杨群,周建平,范深厚,杨洪.水杉自然居群遗传多样性的RAPD研究.中山大学学报(自然科学版),1999,38(1):59-63
    21.苏应娟,王艇,黄超,朱建明,周勤.陆均松不同居群的RAPD分析.中山大学学报自然科学版,1999,38(1):98-101
    22.易能君,韩正敏,尹佟明,黄敏仁,曹汉洋.湿地松抗病种子园的遗传多样性分析.林业科学,2000,36(supple.1):51-55
    23.任旭琴.利用RAPD分析标记对红皮去杉种源遗传多样性的研究.[硕士学位论文].哈尔滨:东北林业大学图书馆,2000
    24.夏铭,周晓峰,赵士洞.天然蒙古栎群体遗传多样性的RAPD分析.林业科学,2001,37(5):126-133
    25.李钧敏,边才苗.RAPD技术在生物遗传多样性研究中的应用.生物学通报,2001,36(12):31-32
    26.庞晓明.用分子标记研究柑桔属及其近源属植物的亲缘关系和枳的遗传多样性.[博士学位论文].武汉:华中农业大学图书馆,2002
    27.同丽娟,张永靖,杨锐,王亚军,潘志崇.利用RAPD技术研究6种蜘蛛的遗传多样性.浙江林业科学,2002,22(4):9-12
    28.高翔,庞红喜,裴阿卫.分子标记技术在植物遗传多样性研究中的应用.河南农业大学学报,2002,36(4):356-359
    29.李晓东,黄宏文,李建强等.孓遗植物水杉的遗传多样性研究.生物多样性,2003,11(2):100-108
    30.宏意,陈月琴,寥文波.南方红豆杉不同居群遗传多样性的RAPD研究.西北植物学报,2003,23(11):1994-1997
    31.宋丛文.珙桐天然群体的遗传多样性分析及其保存样本策略研究.[博士学位论文].武汉:华中农业大学图书馆,2004
    32.李发芳,罗正荣,蔡礼鸿等.RAPD及其在果树上的应用.果树科学,1998,15(3):256-260
    33.张宇和.观赏植物遗传多样性及分类浅谈.北京林业大学学报,1998,20(2):6-11
    34.余桂红,陈尚平,李倩中,刘晓青.RAPD技术在园艺植物遗传育种研究中的应用.湖北农学院学报,2000,20(2):184-187
    35.李文英,顾万春,周世良.蒙古栎天然群体遗传多样性的AFLP分析.林业科学,2003,39(5):29-36
    36.刘树兵,王洪刚.植物的微卫星标记及其应用.山东农业大学学报(自然科学版),2002,33(1):112-116
    37.邱英雄,傅承新,孔航辉.杨梅不同品种的ISSR分析.农业生物技术学报,2002,10(4):343-346
    38.王建波.ISSR分子标记及其在植物遗传学研究中的应用.遗传,2002,24(5):613-616
    39.江树业,陈启锋,方宣钧.水稻农垦58与农垦58s的RAPD和ISSR分析.农业生物技术学报,2000,8(1):63-66
    40.何予卿,张宇,孙梅,何光存,王松文,朱英国.利用ISSR分子标记研究栽培稻和野生稻亲缘关系.农业生物技术学报,2001,9(2):123-127
    41.钱韦,葛颂,洪德元.采用RAPD和ISSR标记探讨中国疣粒野生稻的遗传多样性.植物学报,2000,42(7):741-750
    42.李忠超.特有濒危植物八角莲遗传多样性研究.[硕士学位论文].杭州:浙江大学图书馆, 2002
    43.刘万勃,宋明,刘富中,王怀松.RAPD和ISSR标记对甜瓜种质遗传多样性的研究.农业生物技术学报,2002,10(3):231-236
    44.宣继平,章镇.适合于苹果的ISSR反应体系的建立.植物生理学通讯,2002,38(6):549-550
    45.李海生,陈桂珠,施苏华.海南海桑遗传多样性的ISSR研究.中山大学学报(自然科学版),2004,43(2):67-71
    46.周延清,景建洲,李振勇,张宝华,贾敬芬.利用RAPD和ISSR分子标记分析地黄种质遗传多样性.遗传,2004,26(6):922-928
    47.李海生,陈桂株.海南岛红树植物海桑遗传多样性的ISSR分析.生态学报,2004,24(8):1657-1663
    48.薛大伟,葛学军,郝刚,张长芹.特有珍稀濒危植物景东报春遗传多样性的ISSR分析(英文).植物学报,2004,46(10):1163-1169
    49.祈建民,周东新,吴为人,林荔辉,方平平,吴建梅.RAPD和ISSR标记检测黄麻属遗传多样性的比较研究.中国农业科学,2004,37(12):2006-2011
    50.陈学森,章文才.中国银杏种质资源研究进展.山东林业科技,1997,(4):1-3
    51.刑世岩,有祥亮,宓秀明,祝清义等.我国银杏栽培的历史及现状.山东林业科技,1995,(1):6-10
    52.湖北省老区建设促进会编.银杏的魅力.湖北:湖北科技出版社,2000
    53.周亚林,包俊.随州银杏原生群落考证.湖北林业科技,1998,(2):35-38
    54.左雄中.湖北省银杏古树资源研究.[硕士学位论文].武汉:华中农业大学图书馆,2004
    55.吴俊元,陈品良,汤诗杰.天目山银杏群体遗传变异的同工酶分析.植物资源与环境,1992,1(2):20-23
    56.郑阿宝.银杏遗传多样性及生态保护的研究.[博士学位论文].南京:南京林业大学图书馆,2000
    57.刘叔倩,马小军,郑俊华.银杏不同变异类型的RAPD指纹研究.中国中药杂志,2001,26(12):822-825
    58.葛永奇.孓遗植物银杏遗传多样性研究.[硕士学位论文].杭州:浙江大学图书馆,2003
    59.刘叔倩,郑俊华,果德安.展望分子生物学技术在银杏研究中的应用.国外医药·植物药分册,1999,14(1):4-6
    60.王义强,谭晓风,袁文钧.分子技术及其在银杏遗传育种中的应用前景.经济林研究,2002,20(3):8-10
    61.葛永奇,邱英雄,丁炳扬,傅承新.孑遗植物银杏群体遗传多样性的ISSR分析.生物多样性,2003,11(4):276-287
    62.谭晓风,胡芳名,张启发.银杏主要栽培品种的分子鉴别.中南林学院学报,1998,18(3):3-10
    63.王晓梅,宋文芹,刘松,陈瑞阳等.与银杏性别相关的RAPD标记.南开大学学报(自然 科学),2001,34(3):116-117
    64.梁立兴.中国银杏优良品种简介.河北林业科技,1993,6(2):46-47
    65.郭俊荣.银杏优良品种简介.陕西林业科技,1995,2:19-20
    66.许慕农,李萍,张淑静.银杏优良品种介绍.山东林业科技,1996,4:1-4
    67.郭善基,李健,陈学森,樊宝敏等.银杏品种问题.山东林业科技,1997,(5):9-12
    68.孙宏.银杏主要品种分布及其组合选择.农技服务,1998,(8):11-13
    69.郭善基等编著.银杏优良品种及其丰产优质栽培技术.农业部农业技术推广总站主编.北京:中国林业出版社,2000
    70.冯晓黎.银杏主要栽培品种的RAPD分子鉴别.[硕士学位论文].长沙:中南林学院图书馆,2002
    71.沈永宝,施季森,赵洪亮.利用ISSR_DNA标记鉴定主要银杏栽培品种.林业科学,2005,41(1):202-204
    72.陈月琴,庄丽.“活化石”植物银杏形态与分子进化(Ⅰ).中山大学学报(自科版),1999,38(1):16-19
    73.沈永宝,施季森.银杏、板栗不同组织DNA的提取.南京林业大学学报(自然科学版),2001,25(6):80-82
    74.李希臣,雷勃钧,卢翠华,钱华,吕云波等.高效的植物DNA提取方法.生物技术,1994,4(3):39-41
    75.邹喻平,汪小全,雷一丁,斐颜龙,张志宪等.几种濒危植物及其近源类群总DNA的提取与鉴定.植物学报,1994,36(7):528-533
    76.李友勇,姜德明,王巧玲,荆瑞俊.一种快速提取植物总DNA的良好材料与方法.河南职技师院学报,1995,23(3):103
    77.房经贵,张镇.一种提取果树叶片DNA的简便方法.生物技术,1999,9(2):31-32
    78.姜玲,蔡礼鸿等.一种提取银杏中DNA的方法.植物生理学通讯,2000,36(4):340-342
    79.F.奥斯伯,R.布伦特,R.E.金斯顿,D.D.穆尔,J.G.塞德曼,J.A.史密斯,K.斯特拉尔著.颜子颖,王海林译,金冬雁校.精编分子生物学实验指南.北京:科学出版社,1998
    80.[英]Clark MS主编.顾红雁,瞿礼嘉主译,陈章良主校.植物分子生物学—实验手册.北京:高等教育出版社,施普林格出版社,1998
    81.林万明主编.PCR技术操作和应用指南.上海:人民军医出版社,1998
    82.李永明,赵玉琪等著.实用分子生物学方法手册.北京:科学出版社,1999
    83.B.R.格利克,J.E.汤普森主编.植物分子生物学及生物技术的实用方法.重庆:重庆出版社,1999
    84.曼尼阿蒂斯,萨姆布鲁克,弗里奇,金冬雁,黎盂枫[译].分子克隆实验指南(第二版).北京:科学出版社,1998
    85.伍晓尧,罗超权,马涧全主编.分子遗传学与基因工程.河南:河南医科大学出版社,1998
    86.吴乃虎编著.基因工程原理(第二版,上册).北京:科学出版社,1999
    87.孙树汉主编.基因工程原理与方法(第一版).上海:人民军医出版社,2001
    88.杨建雄编著.生物化学与分子生物学实验技术教程(第一版).北京:科学出版社,2002
    89.吕雪梅,杨关福,张细权.RAPD分析中遗传距离计算方法的比较.华南农业大学学报(增刊),1997,18(增刊):90-97
    90.黄原著.分子系统学—原理、方法及应用.北京:中国农业出版社,1998
    91.潘莹,赵桂仿等.分子水平的遗传多样性及其测量方法.西北植物学报,1998,18(4):645-653
    92.解新明,云锦凤.植物遗传多样性及其检测方法.中国草地,2000,6:51-59
    93.余家林编著.农业多元试验统计.北京:北京农业大学出版社,1993
    94.杜荣骞编著.生物统计学.北京:高等教育出版社,2000
    95.裴新澍著.生物进化控制论.北京:科学出版社,1998
    96.孙辉芳.胚与胚乳的关系.生物学通报,1989,(8):15
    97.谭晓风.银杏RAPD分子遗传图谱的构建及主要栽培品种和雌雄株的分子鉴别.[博士学位论文].长沙:中南林学院图书馆,1997
    98.胡芳名,谭晓风,李红.香榧种子胚乳DNA抽提.经济林研究,1999,17(4):5-7
    99.任旭琴,王秋玉,刘淮兵.红皮云杉胚乳中提取DNA的最佳时期.东北林业大学学报,2001,29(3):37-39
    100.胡芳名,谭晓风,何德,李翠新.CTAB法抽提香榧种子胚乳DNA的改进.湖南林业科学,2002,29(1):1-5
    101.曹福亮著.中国银杏.江苏:江苏科学技术出版社,2002
    102. Whitkus R, Mota-Bravo L, Gomez-Pompa A, de la Cruz M. Genetic diversity and relationships of cacao (Theobroma cacao L.) in southern Mexico. Theoretical and Applied Genetics, 1998, 96 (5) : 621-627
    103. Rajora OP. Genetic biodiversity impacts of silvicultural practices and phenotypic selection in white spruce. Theoretical and Applied Genetics, 1999, 99 (6): 954-961
    104. Rajagopal J, Bashyam L, Bhatia S, Khurana DK, Srivastava PS. Evaluation of genetic diversity in the Himalayan poplar using RAPD markers. Silvae Genetica, 2000, 49 (2): 60-66
    105. Anthony F, Bertrand B, Quiros O, Wiliches A, Lashermes P, Berthand J. Genetic diversity of wild coffee (Coffea arabica L.) using molecular markers. Euphytica, 2001, 118 (1): 53-65
    106. Vieira RF, Grayer RJ, Paton A, Simon JE. Genetic diversity of Ocimum gratissimum L. based on volatile oilconstituents, flavonoids and RAPD markers. Biochemical Systemafics & Ecology, 2001, 29 (3): 287-304
    107. Vornam B, Gebhardt K, Cassells AC (ed.), Doyle BM (ed.), Curry RF. PCR-based markers reveal genetic identity and diversity in subset collections of wild and cultivated apple. Acta Horticulturae, 2000, No.530:463-467
    108. L F Viccini, D C Souza da Costa, M A Machado, and A L Campos, Genetic diversity among nine species of Lippa (Verbenaceae) based on RAPD Markers. Plant Syst. Evol, 2004,6: 79-86
    109. Gillies AC, Navarro C, Lowe AJ, Newton AC, Hernandez M, Wilson J, Cornelius JP. Genetic diversity in mesoamerican populations of mahogany (Swietenia macrophylla), assessed using RAPDs. Heredity, 1999,83 (Pt 6) : 722-732
    110. Jordano P, Godoy JA. RAPD variation and population genetic structure in Primus mahaleb (Rosaceae), an animal-dispersed tree. Molecular Ecology, 2000,9(9) : 1293-1305
    111. Lowe AJ, Wilson J, Dawson IK, Gillies ACM. Conservation genetics of bush mango from central/west Africa: implications from random amplified polymorphic DNA analysis. Molecular Ecology, 2000,9 (7) : 831-841
    112. Ofori DA, Swaine MD, Leifert C, Cobbinah JR, Price AH. Population genetic structure of Milicia species characterised by using RAPD and nucleotide sequencing L. Genetic Resources & Crop Evolution, 2001,48 (6) : 637-647
    113. Lacerda DR, Lemos JP, Lovato B, Acedo MDP. Genetic diversity and structure of natural populations of Plathymenia reticulata (Mimosoideae), a tropical tree from the Brazilian Cerrado. Molecular Ecology, 2001,10 (5) : 1143-1152
    114. Nakajima Y, Yamamoto T, Oeda K. Characterization of genetic diversity on nuclear and mitochondrial genomes in Daucus varieties by RAPD and AFLP. Plant Cell Reports, 1998, 17 (11) : 848-853
    115. G Ude, M Pillay, E Ogundiwin, A Tenkouano. Genetic diversity in an African plantain core colletion using AFLP and RAPD markers.Theor Appl Genet, 2003,107:248-255
    116. M E Fernandez, A M Figueiras, C Benito.The use of ISSR and RAPD markers for detecting DNA polymorphism, genotype identification and genetic diversity among barely cultivars with known origin. Theo Appl Genet, 2002,104:845-851
    117. Kuddus RH, Kuddus NN, Dvorchik I. DNA polymorphism in the living fossil Girikgo biloba from the Eastern United States. Genome, 2002,45 (1): 8-12
    118. Fan XX, Shen L, Zhang X, Chen XY, Fu CX. Assessing genetic diversity of Girikgo biloba L. (Ginkgoaceae) populations from China by RAPD markers. Biochemical genetic, 2004,42 (7-8): 269-278
    119. C Mattioni, M Casasoli, M Gonzalez, R Ipinza and F Villani. Comparison of ISSR and RAPD markers to characterize three Chilean Nothofagus species. Theoretical and Applied Genetics, 2002,10 (8) : 122-128
    120. M Martins, R Tenreiro and M M Oliveira. Genetic relatedness of Portuguese almond cultivars assessed by RAPD and ISSR markers. Plant Cell Reports, 2003,11 (2 ) : 299-306

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700