用户名: 密码: 验证码:
西天山吐拉苏地区主要金矿床地质地球化学及成因研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
与陆相火山岩有关的浅成低温热液型金矿床虽然经过近代一百多年的研究,但对其认识仍处于一个不断深化的阶段。特别是20世纪80年代以来,随着一系列本类型金矿床在世界范围内被不断发现,对其特征及成因的研究便越来越深入。迄今为止,对不同成矿域中本类型金矿床的深入研究,在现代成矿学研究中仍占有重要地位。
     新疆伊宁县吐拉苏盆地内产有众多与陆相火山岩有关的浅成低温热液型金矿床(点),代表性的有阿希大型、京希和伊尔曼得中—小型金矿床,这些金矿床自发现以来,不少研究者陆续对其进行了研究。就目前存在的主要问题来看,争议的焦点仍在于对成矿流体来源的认识上,对成矿流体来源认识的不同必然导致在成矿作用过程及形成机制的认识上存在分歧。
     本研究针对这些长期存在的争议问题,以“十五”国家科技攻关计划“吐拉苏金矿带大型金矿床定位预测”专题为依托,从地质、地球化学及流体包裹体等多角度研究入手,对阿希、京希和伊尔曼得金矿床的特征、成矿流体来源、成矿作用过程及成因类型进行了较为系统的研究,取得了以下新认识:
     1.明确了成矿流体、成矿物质的来源。本文结合流体包裹体与地球化学研究对成矿流体、成矿物质的来源进行了探讨。首次采用激光拉曼光谱对单个流体包裹体的成分进行了分析,并采用流体包裹体显微测温方法对成矿流体的温度、压力等物理化学参数进行测定与估算,同时对具有代表性的岩石与矿石进行了常量、微量、稀土元素及同位素分析,认为成矿流体来源于早石炭世岩浆作用所产生的火山—次火山热液,晚期有大气降水参与;成矿物质主要来源于下石炭统大哈拉军山组中、中酸性火山岩及火山碎屑岩。
     2.本次研究进一步确定了区内次火山岩体与成矿的密切关系。对这三个金矿区内出露的次火山岩体进行了进一步的研究,确定了其不仅是成矿流体、物质的来源之一,而且更重要的是,它是成矿过程中的热动力来源。
     3.确定阿希、京希和伊尔曼得金矿床为相同的矿化类型。通过对岩石、矿石的矿物组成、组构等资料综合分析研究,对阿希、京希与伊尔曼得金矿床赋矿层位及其矿化类型进行了探讨,认为阿希、京希与伊尔曼得金矿床所赋存的下石炭统大哈拉军山组为有利的赋矿地层,金矿的形成与强烈的次生石英岩化关系极为密切,发生了次生石英岩型矿化。
     4.首次提出区内金矿床具有三位一体控矿特征的新认识。综合野外及室内研究,提出区内金成矿作用的发生具有层位(下石炭统大哈拉军山组)、蚀变(强烈的次生石英岩化)及构造(破火山口以及构造天山构造与非天山构造的交汇部
Although the study on epithermal gold deposits related to volcanic rocks has been continuing for about 100 years, it is still the stage that our cognitions for them have been deepening gradually. Especially from the 1980's on, with a series of this type gold deposits were discovered, the studies on their characters and the cause of formation have being more and more further. So far, researches of this type gold deposit in the different metallogenic provinces have become one of the key fields in modern ore-forming geology.There are many epithermal gold deposits related to subaerial volcanic rocks in Tulasu basin of Yining county, Xinjiang where have Axi, Jingxi and Yelmend represented large and mid-small gold deposits, respectively, which had been researched by many researchers in succession since they were discovered. At present, as for chief problems, the focus of disputation is yet the origin of metallogenic liquid, which brings on bifurcation necessarily for the process and mechanism of mineralization.This study is supported by the subject that is the tenth five-year national plan of tackling science and technology key problems of orientation and forecast of large gold deposits in Tulasu gold belt, and in allusion to those long-standing disputed issues, the much systemic researches on the characteristics, source of metallogenic liquid, process and style of mineralization have been carried out by means of geology, geochemistry and fluid inclusions. So these points of view are put forward thereinafter.1. Combined studying fluid inclusions with geochemistry, the source of fluid and matter of mineralization are made clear in this research. The homogenization temperatures, salinities, pressures, and etc. were mensurated. Moreover, components of these single fluid inclusions in samples were analyzed with a LRM for the first time. And the oxide, trace, REE elements and isotopes of representative rocks and ores in main gold deposits were analyzed. Based on above data, it is considered that the ore-forming fluid is major volcanic-subvolcanic hydrothermal fluid mixed minor meteoric water later. And the material mineralization derives from the intermediate to intermediate-acid volcanic rocks and pyroclastics of the Lower Carboniferous Dahalajunshan Formation.2. By further studying the subvolcanic rocks in mining area, the close
    relationship between metallogenism and volcanism is confirmed, that the ore-forming fluid and material were offered by the volcanism, what's more, the heat and dynamics were supplied by it.3. It is defined that Axi, Jingxi and Yelmend gold deposits are the same Au-mineralizing style. By comprehensive analysis the data of the minerals, texture and structure of ores and rocks, the host rocks and the style of mineralization in Axi, Jingxi and Yelmend gold deposits are discussed, and it is suggested that the Lower Carboniferous Dahalajunshan Formation hosted the three gold deposits is advantaged ore-bearing strata and the metallization is related to intense silicification, resulted of forming auriferous secondary quartzite which is one of important ore types of them.4. For the first time, the new idea is put forward that the distribution of ores have the trinity character. Synthesizing the data of field and interior, it is thought that the occurring of metallogeniam lies on strata (the Lower Carboniferous Dahalajunshan Formation), alteration (intense silicification) and structures (calderas, Tianshan structures and anti-Tianshan structures), which will play an important role in guiding exploration and prospecting.Furthermore, there is a quantity of organic compounds such as CH4, C2H4, C6H6, C4H6 and so on in those fluid inclusions. So it is inferred these organic compounds be likely to have a part in ore forming, but the advanced researches have not yet carried out because of limitation in the studying conditions.
引文
1. Ashley R P, and Silberman M L. 1976. Derect dating of mineralization at Goldfield, Nevada, by K-Ar and fission track methods. Economic Geology, 71: 904~924.
    2. Bellon H, Graciano P, and Yumul Jr. 2000. Mio-pliocene Magmatism in the Baguio Mining District(Luzon, Philippines): age clues to its geodynamic setting. Earth and Planetary Sciences, 331: 295~302.
    3. Bethke P M and Rye R O. 1979. Environment of ore deposition in the Greede Mining district, San Juan Mountains, Colorado: PartⅣ. Source of fluids, from oxygen, hydrogen, and carbon isotope studies. Economic Geology, 74: 1832~1851.
    4. BlaskeAR, BornhorstTJ, BrandyJM, etal. 1991. The Shumake Volcanic Dome-Hosted Epithermal, Precious Metal Deposit, Western Mojave Desert, California. Economic Geology, 86: 1646-1656.
    5. Bodnar RJ. 1992. The system H2O-NaCl. PACROFIIV, Program and Abstracts, 108~111.
    6. Bowham H F Jr. 1986. Models for volcanic-hosted epithermal precious metal deposits: a review. International Volcanological Congress, New Zealand, proceedings of symposium 5: 13-17.
    7. Buchanan LJ. 1981. Precious metal deposits associated with volcanic environments in the Southwest. In: Dickinson W R, ed. Relations of Tectonics to Ore Deposits in the South Cordillera. Arizona Geological Society Digest, 14: 237—262.
    8. Cannon RSJr, Pierce A P, AntweilerJC, et al. 1961. The data of lead isotope geology related to problems of ore genesis. Economic Geology, 56(1): 1—38.
    9. Carter N L and Tsenn M C , 1987 . Flow properties of continental lithosphere. Tectonophysics, 136: 27—63.
    10. Cooke D R, Mcphail D C, and Bloom M S. 1996. Epithermal Gold Mineralization, Acupan, Baguio District, Philippines: Geology, Mineralization, Alteration, and the Thermochemical Environment of Ore Deposition. Economic Geology, 91: 243—272.
    11. Craig J R and Rimstidt J D. 1998. Gold production history of the United States. Ore Geology Reviews, 13 (6): 407-464.
    12. Crawford M L . 1981 . Phase equilibria in aqueous fluid inclusions . In : Mineral. Assoc. Can. Short Course Handbook (eds. Hollister LS and Crawford ML), 6:75-100.
    13. Deen J A, Rye R O, Munoz J L, et al. 1994. The Magmatic Hydrothermal system at Julcani,
     Peru: Evidence from Fluid Inclusions and Hydrogen and Oxygen Isotopes. Economic Geology, 89: 1924—1938.
    14. Douthitt C D . 1982 . The geochemistry of the stable isotopes of silicon. Geochem. Cosmochem. Acta, 46: 1449—1458.
    15. Faure K, Matsuhisa Y, Metsugi H, et al. 2002. The Hishikari Au-Ag Epithermal Deposit, Japan : Hydrogen and oxygen isotope evidence in Petermining the Source of Paleohydrothermal Fluids. Economic Geology, 97: 481 ~498.
    16. Fulignati P, Sbrana A. 1998. Presence of native gold and tellurium in the active high-sulfidation hydrothermal system of the La Fossa Volcano(Vulcano, Italy). Journal of volcanology and geothermal researth, 86: 187~198.
    17. Guild P. 1972. Metallogeny and the new global tectonics[A]. 24th International Geological Congress, Section 4, Mineral Deposits [C]. 17~24.
    18. Hayba DO, Bethke P M, Heald P, etal. 1986. Geologic, mineralogic, and geochemical characteristics of volcanic-hosted epithermal precious-metal deposits. Review Economic Geology, 2: 129-167.
    19. Heald P, Foley N, and Hayba D O. 1987. Comparative Anatomy of volcanic-hosted Epithermal Deposits: Acid-sulfate and Adularia-Sericite Types. Economic Geology, 82: 1—26.
    20. Hedenquist J W. 1990. The thermal and geochemical structure of the Broadlands-Ohaaki geothermal system. Geothermics, 19: 151—185.
    21. Hedenquist J W, MatsuhisaY. IzawaE, etal. 1994a. Geology, Geochemistry and Origin of high Sulfidation Cu-Au Mineralization in the Nansatsu District, Japan. Economic Geology, 89: 1—30.
    22. Hedenquist J W and Lowenstern J B. 1994b. The role of magmas in the formation of hydrothermal ore deposits. Nature, 370: 519—527.
    23. HollistorVF. 1985. 浅成低温热液贵金属矿床.周明宝,刘莉译.
    24. Hosono T, Nakano T, and Murakami H. 2003. Sr-Nd-Pb isotopic compositions of volcanic rocks around the Hishikari gold deposit, Southwest Japan: implications for the contribution of a felsic lower crust. Chemical Geology, 201: 19—36.
    25. Izawa E, Urashima Y, Zbaraki K, et al. 1990. The Hishikari gold deposit: High-grade epithermal veins in Quaternary volcanics of Southern Kyushu, Japan. Journal of Geochemical Exploration, 36: 1—56.
    26. Jannas R R, Beane R E, Anler B A, et al. 1990. Gold and copper mineralization at the El Indio deposit, chile. Journal of Geochemical Exploration, 36: 233—266.
    27. Lattanzi p. 1999. Epithermal precious metal deposits of Italy--an overview. Mineralium
     Deposita, 34: 630~638.
    28. Lindgren W. 1922. A suggestion for the terminology of certain mineral deposits. Economic Geology, 17: 202~294.
    29. Lindgren W. 1933. Mineral deposit, 4th ed.: New York, McGraw-Hill, 930P.
    30. Muller D, Franz L, Herzig P M, et al. 2001. Potassic igneous rocks from the vicinity of epithermal gold mineralization, Lihir Island, Rapua New Guinea. Lithos, 57: 163~186.
    31. Petersen U, Noble D C, Arenas M J, et al. 1977. Geology of the Julcani mining district, Peru. Economic Geology, 72: 931~949.
    32. Qin K Z, Sun S, Li J L, et al. 2002. Paleozoic epithermal Au and porphyry Cu deposits in North Xinjiang, China: Epochs, features, tectonic linkage and exploration significance. Resource Geology, 52(4): 291~300.
    33. Roedder E. 1984. Fluid Inclusions: Reviews in mineralogy, 12: 250~650.
    34. Sander M V and Einaudi M T. 1990. Epithermal Deposition of Gold during Transition from Propylitic to Potassic alteration at Round Mountain, Nevada. Economic Geology, 85: 285~311.
    35. Sawkins F J, Metal deposits in relation to plate tectonics[M]. Berlin: Springer-Verlag. 283~294.
    36. Sillitoe R H. 1997. Characteristics and controls of the largest porphyry Cu-Au and epithermal Au deposits in the Circum-pacific region. Australian Journal of Earth sciences, 44: 373~388.
    37. Simon G, Kesler S E, Russel N, et al. 1999. Epithermal gold mineralization in an old volcanic arc: Jacinto deposit, Camagiiey district, Cuba. Economic Geology, 94: 487~506.
    38. Thouruout F V, Salemink J, Valenguela G, et al. 1996. Portvelo: a volcanic-hosted epithermal vein-system in Ecuador, South America. Mineralinm Deposita, 31: 276~369.
    39. Vikre P G. 1989. Ledge formation at the sandstorm and kendall gold mines, Goldfield, Nevada. Economic Geology, 84: 2115~2138.
    40. Wang Y, Sasaki M, Sasada M, et al. 1999. Fluid inclusion studies of the Chinkuashih high-sulfidation gold-copper deposits in Taiwan. Chemical Geology, 154: 155~167.
    41. Zartman R E and Doe B R. 1981. Plaumbotectonics——The model. Tectonophysics, 75: 135~162.
    42.鲍景新,陈衍景,张增杰,等.2002.西天山阿希金矿浊沸石化与古地热成矿流体系统的初步研究.北京大学学报(自然科学版),38(2),252~259.
    43.常海亮,汪雄武,李桃叶.2003.质疑新疆阿希、石英滩浅成低温热液金矿床“高钾”流体.矿床地质,22(2):129~133.
    44.陈常富,李炎水,蒋明霞.1994.山东归来庄金矿床岩浆岩化与成矿物理化学条件.地质科技情报,18(1):60~66.
    45.陈仁义.1995.新疆东准噶尔铜金矿床类型及其时空分布.矿床地质,14(3):228~234.
    46.陈哲夫,徐新,梁云海.1993.新疆构造手风琴式开合演化的基本特点.中国区域地质,12(1):45~58.
    47.陈哲夫,成守德,梁云海,等.1997.新疆开合构造与成矿.乌鲁木齐:新疆科技卫生出版社,1~289.
    48.丁悌平.1994.硅同位素地球化学.北京:地质出版社.
    49.董连慧,田昌烈.2001a.西天山吐拉苏—也里莫墩金成矿带简述.地质与资源,10(2):85~101.
    50.董连慧.2001b.阿希金矿主要蚀变类型及其与金矿化关系[J].地质与资源,10(3):129~132.
    51.董云鹏,周鼎武,张国伟,等.2005.中天山南缘乌瓦门蛇绿岩形成构造环境.岩石学报,21(1):1~8.
    52.范建国,倪培,苏文超,等.2000.辽宁二道沟热液金矿床中石英的稀土元素的特征及意义.岩石学报,16(4):587~590.
    53.范新丽,黄薇,袁尔乾.2002.西天山阿希地区金矿的金元素富集过程探讨.新疆地质,20(3),224~228.
    54.丰成友,姬金生,薛春纪,等.2000.东天山西滩浅成低温热液金矿床地球化学.矿床地质,19(4):322~329.
    55.冯娟萍,王居里.2005.西天山阿希、京希—伊尔曼得金矿床成矿流体包裹体研究及矿化类型探讨.西北地质,38(1):31~36.
    56.冯守忠.1998.吉林五凤—五星山低硫型浅成热液金矿床地质特征与成矿条件.火山地质与矿产,19(2):113~118.
    57.高俊,汤耀庆,赵民,等.1995.新疆南天山蛇绿岩的地质地球化学特征及形成环境初探.岩石学报,11(增刊):85~91.
    58.高俊,何国琦,李茂松.1997.西天山造山带的古生代造山过程.地球科学——中国地质大学学报,22(1):27~32.
    59.高长林,崔可锐,钱一雄,等.1995.天山微板块构造与塔北盆地.北京:地质出版社.1~284.
    60.韩建民.2003.新疆阿希金矿矿床地质特征及找矿方向.新疆有色金属,增刊:37~42.
    61.何国琦,李茂松,刘德权,等.1994.中国新疆古生代地壳演化及成矿.乌鲁木齐:新疆人民出版社,1~437.
    62.贺同兴,卢良兆,李树勋等编.1988.变质岩岩石学.北京:地质出版社,1~236.
    63.华仁民,胡金化,黄耀生,等.1998.福建紫金山矿床流体运移—反应模式及其氧同位 素示踪研究.地球化学,27(2):187~195.
    64.黄汲清,姜春发,王作勋.1990.新疆及邻区板块开合构造及手风琴式运动.新疆地质科学,1:3~14.
    65.姬金生,薛春纪,曾章仁,等.1997.新疆东天山康古尔塔格金矿带研究.地质论评,43(1):69~77.
    66.贾斌,毋瑞身,田昌烈,等.1999b.新疆阿希晚古生代冰长石—绢云母型金矿床特征.贵金属地质,8(4):199~208.
    67.贾斌,毋瑞身,杨森.1999a.阿希金矿典型矿床和隐伏矿预测的研究.国家305项目研究报告(96—915—03—06—02).
    68.贾斌,毋瑞身,田昌烈,等.2001.新疆阿希金矿浅成低温流体特征.黄金地质,7(1):39~46.
    69.贾斌,毋瑞身,田昌烈,等.2003.西天山晚古生代吐拉苏火山盆地金矿成矿系列的成矿机理.地质与资源,12(1):32~35.
    70.姜福芝,王玉柱.2003.火山活动与金矿床.中国地质,30(1):84~92.
    71.姜晓玮,王永江,程博.2001.西天山阿希型金成矿系列的成矿流体特征.地学前缘,8(4):277~280.
    72.姜晓玮,王永江.2002.西天山阿希型金成矿系列及其成因.中国地质,29(2):203~207.
    73.蒋少涌,丁悌平,万德芳.1992.辽宁弓长岭太古代条带状硅铁建造(BIF)的硅同位素组成特征.中国科学(B辑),22(6):626~631.
    74.李本海,薛秀娣.1994.新疆阿希金矿Ⅰ号矿床矿石特征及其成因意义.新疆地质,12(2):146~156.
    75.李昌年.1993.火成岩微量元素岩石学.武汉:中国地质大学出版社,1~195.
    76.李华芹,谢才富,常海亮.1998.新疆北部有色贵金属矿床成矿作用.北京:地质出版社,P:1~264.
    77.李华芹,陈富文,蔡红,等.1999.新疆东部马庄山金矿成矿作用同位素年代学研究.地质科学,34(2):251~256.
    78.廖启林,戴塔根.2000a.新疆北部浅成低温热液型金矿床成矿地球化学特征初探.地质地球化学,28(2):19~25.
    79.廖启林,戴塔根,邓吉牛,等.2000b.新疆北部主要金矿床的成矿地球化学特征.矿床地质,19(4):297~306.
    80.刘斌,沈昆.1999.流体包裹体热力学.北京:地质出版社,1~290.
    81.刘福成,易国新.1997.新疆阿希金矿1~#矿体北段贫矿堆浸研究.新疆有色金属,2:31~33.
    82.刘洪林,董连慧.1992.阿希金矿地质特征及成因初探.新疆地质,10(2):110~119.
    83.刘家远.2001.新疆北部陆相火山岩型金矿床的主要特征.黄金地质,7(3):1~7.
    84.马润则,王润民.1993.新疆阿希金矿近矿蚀变岩的研究.矿物岩石,13(4):57~67.
    85.马润则.1994.新疆阿希矿区火山岩岩石化学特征及其形成环境.成都理工学院学报,21(2):19~28.
    86.马润则,王润民.2000.新疆阿希金矿区古火山机体及其控矿作用.新疆地质,18(3):229~235.
    87.毛景文,李晓峰,张作衡,等.2003.中国东部中生代浅成热液金矿的类型、特征及其地球动力学背景.高校地质学报,9(4):620~637.
    88.庞奖励.1998.辽宁二道沟金矿稳定同位素地球化学研究.陕西师范大学学报(自然科学版),26(2):81~84.
    89.漆树基,李长河.1994.新疆阿希地区大哈拉军山组火山岩金元素地球化学特征及其成矿关系.新疆地质,12(2):139~145.
    90.漆树基,翟伟,白玉海,等.1995.阿希金矿外围靶区评价研究.国家305项目研究报告(85—902—04—01—04).
    91.漆树基.1999.伊宁吐拉苏火山盆地构造及金矿成矿关系.新疆地质,17(2):121~128.
    92.漆树基,张桂林.2000.伊宁吐拉苏地区硅化岩金矿特征及成因.新疆地质,18(1):42~50.
    93.沙德铭,田昌烈,刘海山,等.1995.新疆伊宁县阿希金矿外围异常、靶区筛选和评价研究.国家305项目研究报告(85—902—04—01—02).
    94.沙德铭.1998.西天山阿希金矿流体包裹体研究.贵金属地质,7(3):180~188.
    95.沙德铭,苑丽华.2003.浅成低温热液型金矿特点、分布及找矿前景.地质与资源,12(2):115~124.
    96.沈远超等.1996.新疆阿希金矿成矿规律及找矿方向研究.新疆305项目报告.
    97.汤耀庆,高俊,赵民,等.1995.西南天山蛇绿岩和蓝片岩.北京:地质出版社,1~133.
    98.田培仁.1993.非天山方向构造与区域控矿探讨.地质与勘探,37(9):29~32.
    99.涂光炽.1993.关于火山岩型矿床若干问题的探讨.中国地质学会岩石专业委员会编,李兆鼎,王碧香主编.火山岩火山作用及有关矿产——第二界全国火山岩会议论文集.北京:地质出版社,1~237.
    100.涂光炽.1994.超大型矿床的探寻与研究的若干进展.地学前缘.1(3~4):45~53.
    101.涂光炽.1999.初议中亚成矿域.地质科学,34(4):397~404.
    102.涂光炽.2001.过去20年矿床事业发展的概略回顾.矿床地质,20(1):1~9.
    103.王仁民,游振东,富公勤.1989.变质岩石学.北京:地质出版社.
    104.王学潮,何国琦,李茂松,等.1996.浅论反天山构造带.新疆地质,14(3):193~ 203.
    105.王义天,毛景文,卢欣祥.2001.嵩县金矿成矿时代的~(40)Ar—~(39)Ar年代学证据.地质论评,47(5):551~555.
    106.王志辉,唐菊兴.1996.新疆阿希金矿床矿石建造特征及成因.矿物岩石,16(1):68~73.
    107.王作勋,邬继易,吕喜朝,等.1990.天山多旋回构造演化及成矿.北京:科学出版社,1~218.
    108.王润三,王居里,周鼎武,等.1999.南天山榆树沟遭受麻粒岩相变质改造的蛇绿岩套研究.地质科学,34(2):166~176.
    109.魏菊英,王关玉编.1988.同位素地球化学.北京:地质出版社,1~166.
    110.毋瑞身,漆树基,董连慧,等.1995.新疆伊宁县阿希金矿控矿规律与外围靶区评价研究.国家305项目研究报告(85—902—04—01).
    111.毋瑞身,田昌烈,杨芳林,等.1996.新疆阿希地区金矿概论.贵金属地质,5(1):6~21.
    112.毋瑞身,田昌烈,黄明扬等.1998.西天山金、铜矿地质特征概述.贵金属地质,7(1):1~18.
    113.毋瑞身,田昌烈,沙德铭,等.1999.西天山吐拉苏—也里莫墩早石炭世火山岩带地质特征.地质论评.45(增刊):1078~1087.
    114.肖龙,王方正,付民禄,等.2001.伊犁京希-依尔曼德金矿床的热液蚀变及成矿流体演化特征.地质学报,75(4):518~526.
    115.肖龙,王方正,付民禄.2002a.新疆京希-伊尔曼德金矿床矿化类型:热液蚀变及流体包裹体证据.矿床地质,21(1):58~64.
    116.肖龙,王方正,张桂林,等.2002b.新疆西天山高硫化型京希。伊尔曼德金矿床的识别标志及其找矿意义.地质科技情报,21(3):74~78.
    117.肖龙,王方正.2002c.新疆伊犁京希—伊尔曼得金矿区角砾岩特征及成因.矿物岩石,22(2):9~12.
    118.肖龙,王方正,Hayward N,等.2003.新疆伊犁吐拉苏地区的线性构造及控矿特征.地球科学——中国地质大学学报,28(2):191~195.
    119.肖序常,汤耀庆,冯益民,等.1992.新疆北部及其邻区大地构造.北京:地质出版社,P:1~165.
    120.新疆维吾尔自治区地质矿产局.1993.新疆维吾尔自治区区域地质志.北京:地质出版社.1~841.
    121.杨芳林,刘海山,田昌烈,等.1995.新疆伊宁县阿希金矿区域成矿背景研究.国家305项目研究报告(85—902—04—01—03).
    122.杨树德.1994.新疆北部的古板块构造.新疆地质,12(1):1~8.
    123.应汉龙.1999.浅成低温热液金矿床的全球背景.贵金属地质,8(4):241~250.
    124.游振东,王方正主编.1988.变质岩岩石学教程.武汉:中国地质大学出版社,1~235.
    125.翟伟,杨荣勇.1998.新疆伊宁县伊尔曼德金矿床地球化学特征.中山大学学报(自然科学版),37(增刊),109~113.
    126.翟伟,杨荣勇,漆树基.1999.新疆伊宁县伊尔曼德热泉型金矿床地质特征及成因.矿床地质,18(1):47~54.
    127.翟裕生,邓军,李晓波.1999.区域成矿学.北京:地质出版社,1~287.
    128.翟裕生.2001.走向21世纪的矿床学.矿床地质,20(1):10~14.
    129.张旗,周国庆.2001.中国蛇绿岩.北京:科学出版社,1~182.
    130.张德全,李大新,丰成友,等.2001.紫金山地区中生代岩浆系统的时空结构及其地质意义.地球学报,22(5):403~408.
    131.张德全,佘宏全,李大新,等.2003.紫金山地区的斑岩—浅成热液成矿系统.地质学报,77(2):253~261.
    132.张桂林,梁金城,Hayward N,等.2002.新疆西天山吐拉苏火山盆地金矿的构造控矿规律.地质与勘探,38(5):24~29.
    133.张学洲,陈光进.1996.马庄山矿区构造地球化学测量研究.新疆地质,4:318~323.
    134.张贻侠,刘连登,寸硅,等.1996.中国金矿床:进展与思考.北京:地质出版社,1~205.
    135.赵振华.1997.微量元素地球化学原理.北京:科学出版社,1~238.
    136.郑永飞,陈江峰编著.2000.稳定同位素地球化学.北京:科学出版社,1~316.
    137.周玲棣,郭九皋,刘秉光,等.2001.日本菱刈金矿冰长石结构态.科学通报,46(4):338~341.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700