用户名: 密码: 验证码:
IPC-208B型原子力显微镜的镜体设计及其应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
原子力显微镜(AFM)是在扫描隧道显微镜(STM)的基础上发展起来的表面检测仪器,它克服了STM不能检测绝缘材料的缺点,是纳米科技中最为有效和重要的检测加工手段,它的发明和应用极大地促进了纳米科技的发展。反之随着原子力显微镜成功的应用于物理、化学、微电子、纳米材料、生命科学和微机械加工等众多科学领域中,对于仪器本身的结构、性能、稳定性、操作的简便性都有不同的要求,因而更加引起人们的重视其发展和产业化。
     通过对AFM基本原理的了解,以及对相应于不同应用的改进技术和在同样原理基础上发展起来的新型检测仪器的了解为背景,通过比较和分析,找出现有仪器主要的缺陷和不足,在比较深入的体会的基础之上,改进原有仪器的不足,设计出IPC—208B型原子力显微镜,它集AFM与STM为一体的AFM,其中的STM可以单独使用。并进行了一些实验研究,检验仪器的性能。目前,该机已有很好的检测效果,其横向分辨力优于0.1nm,纵向分辨力0.01nm,不仅拓展了AFM的应用领域,也为AFM在国内的普及和产业化奠定了良好的基础。
     本论文研究的主要内容包括:简要介绍了AFM的基本工作原理;在分析微悬臂微位移检测的各种方式的基础上,采用STM作为原子力显微镜的微位移检测装置,并讨论了微悬臂的制作,以及改进了的微悬臂及其三维控制机构;设计了新的压电陶瓷扫描器以及用步进电机驱动控制系统组成的多自由度纳米级三维移动平台等。还就IPC—208B型原子力显微镜的性能和应用作了一些实验研究。
Atomic force microscope( AFM) which is developed on the base of scanning tunneling microscope (STM) and overcame weakness of STM that it can't examine insulated material, is the most effective and important means of testing and processing in nanometer technology, is receiving increasing popularity in application with the rising of nanometer technology. Besides the stability of the instrument itself, the quality of the re-built pictures, the simplicity of its operation, the expansion of its application sphere and the trend of becoming an industry is being more and more concerned.This dissertation is based on the foundational principles of the AFM, modified-techniques related to different application and some new type instrument that sharing the same principles. By comparing and analyzing, having known about its shortages in the procedure of developing and applying, this dissertation presents the way to modify it to satisfy the need comes from new application design. IPC—208B type of atomic force microscope which is integral whole gathering AFM with STM and among them STM can use alone has been design. Some experiments were done to test the modification. More application experience is gained, its horizontal distinguish the dint the better than 0.1 nm, lengthways distinguishing dint 0.01 nm. This does not only expand its application sphere but also make it easy to get popularization and industrialization.This dissertation mainly concerns the basic theories of the AFM, and study the applicability of STM as the device to detect the micro-displace of the cantilever of the atomic force microscope after a way for tiny moving examination of wiry cantilever is studied. After discussing its brachial examination and got-up way, the wiry cantilever and its three dimensions control organization are developed. Piezoelectricity ceramics scanner and more drive control systems are designed. We also study function of our apparatus with applied research.
引文
[1] 白春礼.扫描隧道显微镜技术及其应用.上海科技出版社.1982
    [2] G.Binnig, H.Rohrer, Ch.Gerber, and W.Weibel,Physica, 109&110B,2075(1982)
    [3] G.Binnig, C.F.Qquate, Ch.Gerber, Phys.Rev.Lett.56,1986:930
    [4] 白春礼.扫描力显微术.北京科学出版社.2000
    [5] 杨晓敏,顾宁,韦钰.原子力显微镜观测聚酰亚胺聚合链结构.化学物理学报,1994,Vol.7 No.2
    [6] L.Ruan,C.Bai,H.Wang,Z.Hu and M.Wan..J.Vac.Sci.Technol,B9(2), 1991
    [7] I. K. Song, J. R. Kitchin, and M. A. Barteau, H3PW_(12)O_(40)-functionalized tip for scanning tunneling microscopy [J] PNAS 2002 99 (2):6471-6475
    [8] 张冬仙,章海军,李博,黄峰.新型原子力显微镜的研制制及其应用[J].光子学报,2002,31(1):50~531
    [9] 侯士敏.赵兴钰.张兆祥.变温超高真空扫描探针显微镜,现代科学仪器,2000,3
    [10] 曹世智,徐毅,赵克功,许婕.扫描探针显微镜的发展与应用.现代计量测试,1998,3
    [11] T.R.Albrecht and C.EQuate.J.Appl.Phys,62,1987:2599
    [12] 何宇亮,褚一鸣,王中怀,刘湘娜,白春礼.纳米硅薄膜界面结构的微观特征,半导体学报,1994,1
    [13] F.F.Abraham,L.P.Batra and S. Ciraci.Phys.Rev.Lett.60,1988:1314
    [14] L.P. Batra and S.Ciraci.J.Vac.Jci.Technol,A6(1988):313
    [15] Yu.N.Moisev, V.M.Mostepanenko, and I.Yu.Sokolow.Phys.Lett.A132(1988:354)
    [16] 李晶,汪尔康.原子力显微镜及其在电化学和电分析化学中的应用.分析化学,1995,11
    [17] 李晓军,何品刚,方禹之,胡均,李名乾.电化学原子力显微镜的应用.分析化学评述与进展.2004,3
    [18] 杨妹清,超高密度记录、超微细加工的新途径,光机电信息,1994,5
    [19] 高论,王丹,王立江.扫描探针显微镜在超精密加工中的应用.吉林大学学报(工学版).2003.9
    [20] 焦正,吴明红,施利毅,李珍,王艳丽.AFM电化学阳极氧化制备二氧化钛纳米线.无机化学学报2004,11
    [21] 单崇新,范希武,张吉英,张振中,王晓华.ZnCdSe量子点的MOCVD生长及其演变.固体电子学研究与进展.2002,11
    [22] 李树玮,小池一步,久野满明.垂直堆垛InAs量子点材料的分子束外延生长.稀有金属.2004.2
    [23] 杜鹃,陈宝安.原子力显微镜在生物医学上的应用.国外医学分子生物学,2003,3
    [24] 曲双,陈英.原子力显微镜在生物医学中的应用.辐射防护通讯,2004,6
    [25] 宗仁鹤,白春礼.原子力显微镜及其在激光作用DNA的结构研究中的应用.量子电子学,1996,4
    [26] 汪盛,蔡绍晰,王大成。原子力显微镜研究蛋白质晶体生长机理及进展。重庆大学学报。2004,7
    [27] 丁辛芳.何云爽.史建伟,亚微米级硅尖端传感器的研制,固体电子学研究与进展,1998,3
    [28] 周世勋.量子力学教程.高等教育出版社.1997
    [29] Bardeen, J. Phys. Rev. Lett., 1961: 6~57
    [30] 包定华,张良莹,姚熹.压电微悬臂在原子力显微镜中的应用,压电与声光,1998,4
    [31] A. Buguin, O. Du Roure, and P. Silberzan, Active atomic force microscopy cantilevers for imaging in liquids, Appl. Phys. Lett, 2001, 78:2982~2984.
    [32] R. D. Jaggi, A. Franco-Obregon, P. Studerus, Detailed analysis of forces influencing lateral resolution for Q-control and tapping mode, Appl. Phys. Lett,2000, 79:135~137.
    [33] 杨学恒,陈红兵等。一种高精度原子力显微镜的设计及应用.中国机械工程,2004,21(15):1909-1911
    [34] B.Kuk,Y.and Silverman,P.J,Rev.Sci.Instrum. 1989,60,165
    [35] N.A>Burnbam,D.D.Dominguez, R.L.Mowery and R.J.Colton.Phys.Rev.Lett,64(1990): 1931
    [36] T.R.Albrecht,C.F. Quate.J.Vac.Sci.Technol,A6(1988):271
    [37] T.R.Albrecht, S.Akamine,T.E.Carver and C.F.Quate. J.Vac.Sci.Technol,A8(1990):3386
    [38] O. Wolter, T. Bayer, J. Greschner.J.Vac.Sci.Technol, B9(1991): 1353
    [39] 李庆祥.徐毓娴.薛实福.刘永生.AFM力传感器微机械加工技术的研究,仪器仪表学报,1996.11
    [40] 庞振基,黄其圣.精密机械设计.机械工业出版社.2000,7
    [41] 朱喜林,张代治.机电一体化设计基础,科学出版社.2004,8
    [42] D.P. E.Smith and G.Binnig,Rev.Sci.Instrum,57(1986):2630
    [43] 杨学恒.陈安.何光宏等.扫描隧道显微镜系统.重庆大学学报.2001.5(3):137-141
    [44] 辛洪政,彭光含,杨学恒.高精度IPC-205型扫描隧道显微镜的设计及应用.重庆大学学报,2004,10
    [45] Jing Yu Lao, Jian Guo Wen, Zhi Feng Ren. Hierarchical ZnO Nanostructures. NANO LETTERS.2002 Vol.2 No.11: 1287-1291.
    [46] 黄蕙芬,陈国平.电子束蒸发Ta_2O_5薄膜的实验研究

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700